x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Development of an LS-DYNA Model of an ATR42-300 Aircraft for Crash Simulation

This paper describes the development of an LS-DYNA simulation of a vertical drop test of an ATR42-300 twin- turboprop high-wing commuter-class airplane. A 30-ft/s drop test of this aircraft was performed onto a concrete impact surface at the FAA Technical Center on July 30, 2003. The purpose of the test was to evaluate the structural response of a commuter category aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with crew and passenger seats, anthropomorphic test dummies, forward and aft luggage, instrumentation, and other ballast. The wings were filled with approximately 8,700 lb. of water to represent the fuel and the aircraft weighed a total of 33,200 lb. The model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry. The seats, dummies, luggage, fuel, and other ballast were represented using concentrated masses. Comparisons were made of the structural deformation and failure behavior of the airframe, as well as selected acceleration time history responses.

application/pdf 11-1.pdf — 1.6 MB