x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Numerical Investigation of Parameters Affecting Crush Mode of Triggered FRP Tube

When a quasi-static axial compressive load is applied to a Fiber Reinforced Plastics (FRP) tube, a continuous and stable fracture phenomenon called “Progressive Crushing” which shows highly effective energy absorption appears. The authors have constructed a cohesive element FEM model that can reproduce the process to this phenomenon. The purpose of this paper is to investigate the most stable chamfer shape for progressive crushing of the FRP tube, by using Cohesive Zone modeling technique. In the study, cross-sectional shapes of triangle type, chevron type and M-type were selected for the simulation of axial crushing test to confirm crush mode. Five geometric shapes of flat plate FEM model were considered to conducting a fundamental investigation. Furthermore, the 3D finite-element models of FRP tube using reasonably cross-sectional shapes were intended to obtain a well-balanced chamfer shape, therefore, providing useful suggestions for FRP tube design and/or manufacture.

application/pdf Akita_ITOCHU.pdf — 615.1 KB