
8th International LS-DYNA Users Conference Computing / Code Tech (1)

 12-11

Improving Crash Analysis by Increasing
Throughput of Large-Scale Simulations

Dale I. Dunlap and Shawn Freeman
Platform Computing

Abstract

Numerical simulation is an important tool used by engineers to design and develop safe automobiles. As engineers
study larger and more complex models, demand for computational throughput increases. Grids allow a company to
utilize its existing hardware investment to build a cost-effective platform for simulating automotive crash testing.

This paper will discuss how grid technology can substantially increase computational throughput of large-scale
parallel simulations without having to upgrade the existing compute infrastructure. This leads to significant
payback since customers can complete more work, while also deferring capital and operational costs.

The Challenge Presented by Large Scale Simulations

While decision makers expect significant contributions from CAE, earlier in the product
development program, an ever-increasing barrage of new or improved requirements threatens to
erode any gains made by buying more and faster hardware.

Large-scale simulations are especially sensitive to lack of resources, and conflicts can arise when
multiple projects are run in the same environment, without any coordination of resources
provided.

Large-scale simulations can have one or more of the following characteristics:

• Multiple jobs – collections of jobs used to study various permutations (i.e. DOE,
stochastic, etc.).

• Heavy memory and disk requirements – simulations that require substantial amounts of
available memory and disk space to complete.

• Long duration – simulation jobs that typically take a long time (CPU and wall clock) to
complete.

This goal of this paper is provide some suggestions on how an organization will be able to
complete more work while using the existing infrastructure. By using the existing resources, it is
possible to save a substantial amount of capital and operational expenditures while meeting the
business requirements for higher quality, no recalls, and faster time to market.

Computing / Code Tech (1) 8th International LS-DYNA Users Conference

12-12

Large scale: Multiple jobs

One of the most significant contributions that CAE has made to the product development process
is the ability to study several different permutations of the same basic design (virtual
prototyping). This is something that could not be done practically in the physical world due the
expensive and time-consuming nature of physical prototypes.

Traditionally, an engineer would have to rely on past experience and gut feelings to decide which
combinations of parameters would be tested and which ones would not. For example, the
engineer might decide to perform a test using the lightest weight vehicle body and largest engine
to determine the worst-case crash scenario. However, other engine and weight combinations
would not be tested.

With CAE, all such combinations can be simulated fairly easily. However, running these models
still requires significant compute resources, which may be scarce in an already over-utilized data
center. Instead of performing hundreds of DOE runs or thousands of stochastic runs, the engineer
selects a subset to perform the analysis on. While this is better than what could have been
achieved through physical testing, it is still not optimal.

With increased demand for quality products with no recalls, running all possible cases is the only
solution.

Large scale: Heavy memory and disk

Continuously larger models are being developed for crash analysis, CFD, NVH, and other
disciplines. The desire to create accurate simulations as close to the real world as possible is
driving engineers to include increasingly more detailed representations of the parts, environment,
and physics involved.

For example, structural and fluid coupling in crash occupant models is now starting to become
mainstream. While this functionality has been available in some form for the past ten years, it
was too expensive (CPU and memory) to perform such analyses outside of an R&D
environment.

New emphasis and interest in out-of-position occupants, and small adults and children
interacting with airbags during the early deployment stages, has driven the need to use more
accurate modeling techniques for airbags.

Furthermore, the very nature of the mathematics used in h-version Finite Element Analysis also
dictates that an exact solution requires the use of infinitely small elements. Therefore, as a
model approaches the ideal representation of the real world, the number of simultaneous
equations to be solved goes up, along with memory and disk requirements.

Large scale: Long duration

A typical full vehicle crash simulation can take several days to complete just 100ms of
simulation time. Faster hardware and parallelization have helped to bring the total time down

8th International LS-DYNA Users Conference Computing / Code Tech (1)

 12-13

over the years. However, new requirements and expectations have blunted the impact that new
technology has had on overall throughput.

Some of these requirements are:

• Demand for improved fidelity when compared to physical testing.
a. Finer granularity when modeling of components.
b. Use of new features (fluid/structures interaction).
c. Heavier reliance on automatic generation (meshless welds, contacts, etc.).

• New scenarios introduced by consumer-oriented testing. For example:
a. EuroNCAP – initiative to reduce pedestrian injury, in car to pedestrian impacts.
b. NCAP – frontal and side impact ratings published and used heavily for

advertising.
c. IIHS – very public 40mph offset barrier and new (2003) side impact testing.

• New and/or improved scenarios introduced by government regulation. For example:
a. FMVSS208 – 5th female and 6 year old dummies for out-of-position.
b. FMVSS214 – quasi-static side impact testing.
c. FMVSS201 – interior head impact requirements.

• Desire to include dummy occupants in models where previously only structural results
were required.

• Desire to use biofidelic human representations, instead of dummy models, in crash
simulations.

Making use of parallel features in LS-DYNA can greatly reduce the amount of wall clock time
required to complete a simulation. The challenge is finding and reserving an appropriate set of
machines with sufficient resources free to run the job.

In all three cases, a perceived scarcity of compute resources has a direct impact on the simulation
engineer’s ability to provide timely and complete results. In some cases, the solution set may be
reduced or the model simplified, or some other compromise is made.

This is counter to the goals of nearly every manufacturing company. Specifically, manufacturers
are relying more heavily on CAE to predict all possible outcomes, and to design a top quality
product at a price that is accepted by consumers and profitable for manufacturers. To this end,
CAE must be utilized to its fullest capability to reduce expensive testing, late stage engineering
changes, and damaging product recalls.

Computing / Code Tech (1) 8th International LS-DYNA Users Conference

12-14

The Solution – Clustering

In most MCAE organizations, there are workstations and compute servers.

Solution for HPC

The compute servers are usually dedicated to a specific group of solvers and run 24/7 in the
corporate data center. Platform LSF HPC is specifically designed to address the needs and
requirements of the high performance computing environment.

Platform LSF HPC provides intelligent scheduling for parallel and serial workload, providing the
capability of solving large, grand challenge problems while utilizing the available computing
resources at maximum capacity. Platform LSF HPC takes full advantage of high performance
network interconnects available on clustered systems and supercomputers.

Figure 1 - HPC Topology

A typical HPC environment will provide several queues for targeted job submission. Some
queues may provide strict run time or memory limits, while others may be tailored for parallel
jobs.

Once appropriate queue and host definitions have been created, it is a simple matter to submit
jobs to the cluster for running:

Example 1 – bsub job submission:

$ bsub –q normal myjob1

8th International LS-DYNA Users Conference Computing / Code Tech (1)

 12-15

Example 1 shows a very simple command for a user to submit a job to the “normal” queue. If a
user wishes to submit a DOE or stochastic study to the queue, this can also be accomplished with
a single command:

Example 2 – bsub job submission for an array of jobs:

$ bsub –q normal < myjobs.scr

Where, “myjobs.scr” might look like this:

#BSUB -J lsdyna[1-100]
#BSUB -n 2
#BSUB -o jobdoe%I.stdout
#BSUB -e jobdoe%I.stderr

/usr/bin/lsdyna970 i=jobdoe${LSB_JOBINDEX}

Example 2 utilizes a job array to submit 100 jobs into the “normal” queue. All 100 jobs are
managed under a single job id, making tracking and management as easy as handling a single
job.

A single user that is running multiple jobs (DOE, stochastic, etc.) can easily monopolize the
cluster, preventing the fair consumption of resources by others. To help prevent this, Platform
LSF HPC can place limits on individual or groups of users as well as utilize special scheduling
algorithms. Limits on users can be become cumbersome to manage for any medium to large
organization and often time using the fairshare scheduler is more than sufficient to solve this
problem.

Figure 2 - Fairshare Hierarchy

Computing / Code Tech (1) 8th International LS-DYNA Users Conference

12-16

Example 3 – Enabling the fairshare scheduler:

<lsb.queues>
Begin Queue
Define a unique queue name
QUEUE_NAME = normal
Give a meaningful description of the queue
DESCRIPTION = Queue used for medium length jobs
Who are the administrators for this queue
ADMINISTRATORS = ddunlap sfreeman
Priority relative to other queues
PRIORITY = 90
Set threshold of 5 minutes for automatic job migration
MIG = 5
Which hosts can be used
HOSTS = all
Which users can use this queue
USERS = all
Define equal Fairshare scheduling for all users
FAIRSHARE = USER_SHARES[[default,1]]
End Queue

Example 3 gives a very simple example of using queue-level fairshare scheduling. The fairshare
priority determines whether a job from a specific user will be dispatched to run or skipped in
favor of another user’s job. The fairshare priority is a function of user shares, number of jobs
running, and history of recently run jobs. In this example, all users have an equal share. It is
possible to bias the priority by assign non-equal shares based on individual users or user groups
for a single queue or cluster wide.

Example 4 – Biasing fairshare to favor the local user group (DepartmentA) over DepartmentB:

<lsb.users>
Begin UserGroup
GROUP_NAME GROUP_MEMBER USER_SHARES
DeptA (ddunlap user3 user5 user7) ()
DeptB (sfreeman user4 user6) ()
End UserGroup

<lsb.queues>
Begin Queue
Define a unique queue name
QUEUE_NAME = normal
Give a meaningful description of the queue
DESCRIPTION = Queue used for medium length jobs
Who are the administrators for this queue
ADMINISTRATORS = ddunlap sfreeman
Priority relative to other queues
PRIORITY = 90

8th International LS-DYNA Users Conference Computing / Code Tech (1)

 12-17

Set threshold of 5 minutes for automatic job migration
MIG = 5
Which hosts can be used
HOSTS = all
Which users can use this queue
USERS = DeptA DeptB
Define equal Fairshare scheduling for all users
FAIRSHARE = USER_SHARES[[default,1] [DeptA,10] [DeptB,5]]
End Queue

In example 4, users from DeptA are given preference over users from DeptB. Both DeptA and
DeptB are given preference over all other users. It is possible to assign individual shares, in the
lsb.users file, and build a hierarchical structure to sway preference towards individual users
within groups. By providing the maximum level of flexibility, Platform LSF HPC preserves the
compute resource owner’s ability to maximize local throughput while still sharing free cycles
with others.

When submitting large memory jobs, it is desirable to execute on a host with sufficient memory
and swap. Otherwise, the job may fail due to a lack of resources and have to be restarted on
another host. This loss of work is not only an inconvenience, but can cost organizations real
money in the form of time and productivity lost.

Example 5 - Large memory jobs may require that thresholds on available memory and swap be
defined:

<lsb.hosts>
Begin Host
HOST_NAME it r1m mem swp tmp
default 15 0.6/1.6 512 1024 2048
End Host

In example 5, we have defined limits on available (free) memory, swap, and scratch space of
512Mb, 1Gb, and 2Gb respectively. If a machine in the cluster, does not meet these
requirements, a job will not be dispatched to it.

It is also possible to create a queue and apply these requirements at the queue level.

Example 6 - Thresholds on available memory and swap defined on the queue:

<lsb.queues>
Begin Queue
Define a unique queue name
QUEUE_NAME = large_mem
Give a meaningful description of the queue
DESCRIPTION = Queue used for large memory jobs
Who are the administrators for this queue
ADMINISTRATORS = ddunlap sfreeman
Priority relative to other queues

Computing / Code Tech (1) 8th International LS-DYNA Users Conference

12-18

PRIORITY = 90
Which hosts can be used
HOSTS = all
Define memory, swap, and scratch start/stop requirements
MEM = 512/64
SWP = 1024/128
TMP = 2048/128
End Queue

In example 6, we have defined limits on available (free) memory, swap, and scratch space of
512Mb, 1Gb, and 2Gb respectively. The queue will not select a host for job dispatch if it does
not meet the requirements given. Additionally, the queue has defined stop limits of 64Mb,
128Mb, and 128Mb for memory, swap, and scratch respectively.

Often, long running jobs take advantage of parallel execution to reduce total wall clock run time.
In cases where jobs are parallel, it is possible to reserve resources such that the jobs don’t sit in
the queue endlessly waiting for the appropriate resources to become available. However, once a
resource is reserved, that resource will sit idle until the parallel job actually starts. To scavenge
these idle resources, one can create a back-fill queue.

Example 7 – Back-fill queue definition:

<lsb.queues>
Begin Queue
QUEUE_NAME = back_fill
DESCRIPTION = backfill queue to utilize reserved resources
for parallel jobs
PRIORITY = 40
BACKFILL = Y
RUN_LIMIT = 20 240
SLOT_RESERVE = MAX_RESERVE_TIME[200]
End Queue

Such a backfill queue definition will allow jobs that are submitted with a run limit of less than
240 minutes to be executed on resources that are reserved for a pending parallel job.

Example 8 – Submitting a job to the “back_fill” queue:

$ bsub –W 10 –q back_fill myjob2
$ bsub –W 222 –q back_fill myjob3
$ bsub –q back_fill myjob4

In example 8, “myjobs2” is submitted with a run limit of 10 minutes. If the job takes longer than
10 minutes, it will be killed by the queue to ensure that the pending parallel has the resources
promised to it. “myjob3” is submitted with a run limit of 222 minutes, while “myjob4” uses the
default queue specified run limit of 20 minutes. Any job with a specified run limit longer than
240 minutes will be rejected by the queue.

8th International LS-DYNA Users Conference Computing / Code Tech (1)

 12-19

Solution for workstations

While clustering dedicated compute servers together to provide a single, powerful virtual super-
computer has become relatively common; most companies still have large numbers of powerful
CAD/CAE workstations sitting idle 75% of the time.

Clever engineers will find a way to selectively use a portion of these machines for test runs or
short “overnighters”, but the typical simulation engineer will only have access to a small number
of local workstations. While the engineer competes with others for these precious “untapped”
computed resources, nearly 4 times as many CAD workstations sit untouched because the
engineer has no access to them.

Often, powerful desktop workstations sit idle only because there is no easy, politically correct
way to coalesce these machines into a manageable compute resource. As a result, more jobs are
sent to the HPC data center, filling up queues and increasing overall time required to push a
single job through the system, and local machines are unwittingly over-taxed with
“overnighters”.

Using Platform LSF HPC, a company can harness their powerful desktop workstations by
grouping them into a cluster. This cluster can be used for large MPP jobs, without any
performance impact on the desktop user. Since these clusters can be managed at the departmental
level, political boundaries remain intact and each owner maintains full control over their
computers.

To accomplish this, several options are available:

• Limit the amount of CPU, memory, swap, and/or any other resource such that a machine
is not overloaded.

• Create windows, during which execution can occur, that disallow execution of jobs
during working hours.

• Set reasonable thresholds for jobs to be suspended and/or migrated to another machine.
• Create a multi-cluster environment in which each department has overall control of their

compute resources (local cluster) while still sharing their resources with others
throughout the organization.

Pooling design and engineering workstations into a local (departmental) cluster brings a few
additional considerations to be accounted for.

Most workstation users would not mind having their workstation crunch large jobs overnight or
on weekends, as long as the jobs do not interfere with their productive working hours. To keep
the machine free from jobs during working hours, a queue can be defined with a run window. A
run window defines a time when the queue is “open for business”. Outside of that time window,
the queue may accept jobs, but will not execute them.

It is important to target solvers that can be check pointed and migrated when establishing a
workstation-based cluster. LS-DYNA is an excellent example of such a solver. Should a window
close during a solution, the job can be check pointed and migrated to another host, or set of
hosts, without having to start from the beginning.

Computing / Code Tech (1) 8th International LS-DYNA Users Conference

12-20

Example 9 - Create a run window to only allow jobs Monday through Friday at night and
through the entire weekend:

<lsb.queues>
Begin Queue
Define a unique queue name
QUEUE_NAME = off_hours
Give a meaningful description of the queue
DESCRIPTION = Queue used for nightly and weekend work
Who are the administrators for this queue
ADMINISTRATORS = ddunlap sfreeman
Priority relative to other queues
PRIORITY = 90
During what times are jobs allowed to run in this queue
RUN_WINDOW = (18:00-6:00 5:18:00-1:6:00)
Which hosts can be used
HOSTS = all
End Queue

The above example defines a queue definition that will allow jobs to run only at nights (Monday
through Friday) and through the entire weekend. There are no restrictions on job size, type, or
when the job can be submitted. Jobs submitted to the queue when the run window is closed will
simply pend until the window opens. Jobs that are running when the window closes will be
suspended until the window opens again.

In the event that a user is using or logs into a host, during the open time period of the run
window it is possible to migrate the job to another host. This will free resources on that host to
help ensure that the interactive user has the fullest availability of the host resources. To
accomplish this, simply add a few more lines to the queue and host definition files.

Example 10 – Run window, with automatic migration:

<lsb.queues>

Begin Queue
Define a unique queue name
QUEUE_NAME = off_hours
Give a meaningful description of the queue
DESCRIPTION = Queue used for nightly and weekend work
Who are the administrators for this queue
ADMINISTRATORS = ddunlap sfreeman
Priority relative to other queues
PRIORITY = 90
During what times are jobs allowed to run in this queue
RUN_WINDOW = (18:00-6:00 5:18:00-1:6:00)
Set threshold of 15 minutes for automatic job migration
MIG = 15
Which hosts can be used
HOSTS = all

8th International LS-DYNA Users Conference Computing / Code Tech (1)

 12-21

End Queue

<lsb.hosts>
Begin Host
HOST_NAME it r1m
default 15 0.6/1.6
End Host

In example 10, we allow jobs to be suspended by the system for 15 minutes (MIG = 15 in
lsb.queues). After that time has passed, such jobs will be migrated to another host. We have also
limited the hosts by requiring that the machine be idle (no active keyboard or mouse activity) for
at least 15 minutes before starting a job (“it” of 15), and that the 1 minute run queue length
(kernel queue length) be less than 0.6 (“r1m” of 0.6). Jobs will be stopped if r1m hits 1.6 or
higher (this indicates the machine is busy). Placing these limits at the host level helps to ensure
that a machine will be responsive to an interactive user, even during times when the run window
is open.

While HPC computers will likely have high-speed inter-connects (i.e. Myrinet), workstations
clusters will likely have more conventional inter-connects and domains separated by switches. In
such cases, it is desirable to ensure that selection of hosts for parallel jobs remain on the same
domain to minimize the impact of network latency on the message passing portion of the
process.

Grouping hosts by locality can be accomplished through the use of the host groups.

Example 11 – Grouping hosts by locality.

<lsb.hosts>
Begin HostGroup
GROUP_NAME GROUP_MEMBER
groupA (hostA hostD)
groupB (hostF hostK groupA)
groupC (!)
End HostGroup

In this example, three host groups are created. The groups are described below:
GroupA – includes “hostA” and “hostD”
GroupB – includes “hostF”, “hostK”, and all the hosts from “groupA”
GroupC – will be dynamically configured using an “egroup”.

The “egroup” is especially useful for clusters where hosts may come or go from the cluster, or
where a machine may be moved from one subnet to another arbitrarily. A site specific egroup
can determine the locality based on the organization’s topology and provide that information to
Platform LSF HPC.

Computing / Code Tech (1) 8th International LS-DYNA Users Conference

12-22

Solution for the organization

At this point, we have accomplished creating a cluster out of a collection of desktop workstations
and also making sure that those workstations would give a preference to interactive users.

Once a department implements a cluster utilizing local workstations, it becomes possible for
inter-departmental resource sharing through Platform LSF MultiCluster.

Platform LSF MultiCluster extends an organization's reach to share resources beyond a single
Platform LSF HPC cluster to span geographical locations. With Platform LSF MultiCluster, local
ownership and control is maintained ensuring priority access to any local cluster while providing
global access across an enterprise grid. Organizations using Platform LSF MultiCluster complete
workload processing faster with increased computing power, enhancing productivity and
speeding time to results.

Platform LSF MultiCluster supports two models for resource sharing:

1. Resource leasing – resources of a remote cluster are leased to a local cluster, becoming
part of the local clusters virtual computer.

2. Job forwarding – queues on the local cluster may forward jobs to a remote cluster for
execution.

Resource leasing requires that the provider, often the HPC, cluster export hosts to the consumer
cluster(s). This allows consumer clusters to provision additional resources from the provider on
an as needed basis. The leased compute resources show up in the consumer cluster as a regular
part of the cluster. The local user need not be aware that the compute resources are not actually
local to the cluster.

Figure 3 - Resource Leasing Model

8th International LS-DYNA Users Conference Computing / Code Tech (1)

 12-23

Example 12 – Export hosts from the HPC to clusterA and clusterB (workstation clusters for
DepartmentA and DepartmentB respectively):

<lsb.resources>
Begin HostExport
PER_HOST = ibm01 ibm02
SLOTS = 4
DISTRIBUTION = [clusterA, 2] [clusterB, 1]
End HostExport

<lsb.queues>
Begin Queue
Define a unique queue name
QUEUE_NAME = large_mem
Give a meaningful description of the queue
DESCRIPTION = Queue used for large memory jobs
Who are the administrators for this queue
ADMINISTRATORS = ddunlap sfreeman
Priority relative to other queues
PRIORITY = 90
During what times are jobs allowed to run in this queue
RUN_WINDOW = (18:00-6:00 5:18:00-1:6:00)
Which hosts can be used
HOSTS = all all@hpcCluster
Define memory, swap, and scratch start/stop requirements
MEM = 512/64
SWP = 1024/128
TMP = 2048/128
End Queue

In the preceding example, the HPC exports two hosts, ibm01 and ibm02, to clusterA and
clusterB. Note that clusterA has been 2 shares to clusterB’s 1. The “large_mem” queue, from
clusterA, includes the hosts exported from the hpcCluster as well as all local hosts.

The job forwarding provided the ability to spill jobs over to another cluster as the local cluster
becomes busy. For example, when the workstation window closes, it is possible to migrate the
jobs to another cluster for completion, rather than having them pend on the workstation waiting
for the window to reopen.

Computing / Code Tech (1) 8th International LS-DYNA Users Conference

12-24

Figure 4 - Job Forwarding Model

The job forwarding model is equally simple to setup:

Example 13 – Forward jobs from clusterA to hpcCluster:

<lsb.queues>
Begin Queue
Define a unique queue name
QUEUE_NAME = large_mem_recv
Give a meaningful description of the queue
DESCRIPTION = Queue used for large memory jobs
Who are the administrators for this queue
ADMINISTRATORS = ddunlap
Priority relative to other queues
PRIORITY = 90
Which clusters can this queue receive jobs from
RCVJOBS_FROM = clusterA
Define memory, swap, and scratch start/stop requirements
MEM = 512/64
SWP = 1024/128
TMP = 2048/128
End Queue

<lsb.queues>
Begin Queue
Define a unique queue name

8th International LS-DYNA Users Conference Computing / Code Tech (1)

 12-25

QUEUE_NAME = large_mem_snd
Give a meaningful description of the queue
DESCRIPTION = Queue used for large memory jobs
Who are the administrators for this queue
ADMINISTRATORS = sfreeman
Priority relative to other queues
PRIORITY = 90
Which hosts can be used
HOSTS = none
Send jobs where
SNDJOBS_TO = hpcCluster
Define memory, swap, and scratch start/stop requirements
MEM = 512/64
SWP = 1024/128
TMP = 2048/128
End Queue

Example 13 establishes a receiving queue on hpcCluster and sending queue on clusterA. The
queue on clusterA is configured to only forward jobs to HPC, and not run any locally.

Job forwarding and resource leasing can work both ways (the local cluster can receive jobs and
export resources). There are few limits on how an organization can creatively leverage the
functionality of the Platform LSF MultiCluster environment.

Interactive uses for Platform LSF HPC

Additionally, it is possible to leverage the HPC and workstation clusters for tasks other than
batch jobs. Some of the advantages of doing so include:

• Resource accounting
• License scheduling
• User and/or host limits

Using Platform LSF HPC, interactive jobs can be run through the batch system with little or no
noticeable impact on the end user. To accomplish this, we only need to define a special
“interactive” queue for receiving such jobs.

Example 14 – Interactive queue definition:
<lsb.queues>

Begin Queue
QUEUE_NAME = interactive
DESCRIPTION = queue for tracking interactive jobs
PRIORITY = 150
INTERACTIVE = ONLY
NEW_JOB_SCHED_DELAY = 0
HOSTS = all
End Queue

Computing / Code Tech (1) 8th International LS-DYNA Users Conference

12-26

In example 14, we have defined an interactive queue. The NEW_JOB_SCHED_DELAY is the
key to making the queue responsive to the user commands by scheduling the job immediately.

Example 15 – Submit a job to the interactive queue:

$ bsub –q interactive –I gimp
$ bsub –q interactive –I –m “`hostname`+5 others” hm

The first bsub command, in example 14, submits interactive Gimp session. The job will be
started on the best host available in the cluster. It will not be obvious to the end user that the job
is running through Platform LSF HPC, even though the job may be actually running on a
different host than the host on which the user is sitting. In some cases, due to licensing or
performance issues, it may be desirable to prefer the localhost to other hosts in the queue. The
second bsub command shows an example of this. Here, an interactive hm session is started, with
a preference (+5) for the localhost, as determined by the “hostname” command.

Conclusion

The solution is a phased process that starts with the HPC, extends to the engineering
workstations, and then ties the organization together through Platform LSF MultiCluster. Each
cluster is owned and managed locally, but has the ability to share and borrow resources from
other clusters within the organization.

By using a 3-phased approach, it is possible to maximize the utilization of the existing
infrastructure incrementally. Each phase of implementation improves the organizations ability to
meet current and future computing needs, without substantial additional investment.

