
8th International LS-DYNA Users Conference Computing / Code Tech (1)

 12-1

LS-DYNA Communication Performance Studies

Ananthanarayanan Sugavanam and Guangye Li
High Performance Computing, IBM

Abstract

In recent years, MPP-DYNA, the message passing parallel version of LS-DYNA, has become more and more
popular in car crash and metal stamping simulations due to its good scalability which may reduce the turn-around
time significantly when more processors are used. However, so far, most users only use 16 or less processors for
LS-DYNA simulation because of the limitation of the scalability on a larger number of processors. This paper
analyzes the communication patterns, message sizes and costs of simulation of two models. It is concluded that the
unbalanced work load among processes is the bottleneck for scalability. Our study shows that some special
decomposition techniques including sliding interface decomposition and scaling on certain directions may produce
more balanced work load and, therefore, improve scalability. It is our hope that this study provides some insight for
the algorithm improvement which may lead to better MPP-DYNA scalability on a larger number of processors.

Introduction

The automotive industry has started to rely more and more on the message passing parallel
(MPP) version of LS-DYNA for car crash and metal stamping simulations primarily due to its
increasing reliability, and cost considerations. The parallel performance of the MPP version of
LS-DYNA on a given hardware relies on a number of factors, such as single node compute
performance, load balancing, communication characteristics of the interconnect (switch &
network performance), the message passing details, the frequency of communication and the
accuracy of the solution. As more and more crash simulations are relying on the MPP version, it
is critical to understand some of these issues sufficiently. This paper will address the parallel
performance issues of MPP-DYNA using some of the powerful tools developed at the IBM
Research laboratories. This analysis will study the details of the work done by the different
processes, message passing details and importance of load balancing by looking at different
decomposition options, and will identify the performance bottlenecks in the application. This
will be critically important for the LS-DYNA developers, and will help in improving methods to
obtain better scalability as well as in using the MPP version of LS-DYNA more efficiently.

There have been other studies that addressed the communication performance issues in LS-
DYNA. Lin [1], Roe, and Fong [2] have studied the performance of MPP-DYNA using some
specific system tools to identify some of the communication performance issues. While this
study uses similar system tools, the primary purpose is to identify, and associate the
decomposition methods with performance bottlenecks to get better insight on improving
scalability. With the type of imbalance seen in this study, even a perfectly balanced
communication subsystem (with zero latency and infinite bandwidth) will have problem scaling
beyond a dozen or so processes. Addressing the load balancing will allow LS-DYNA
simulations to be done on hundreds of processors instead of dozens of processors.

In the following sections, domain decomposition methods, the description of tools used (both the
system hardware and software tools) for the creation of LS-DYNA trace binary , description of

Computing / Code Tech (1) 8th International LS-DYNA Users Conference

12-2

two models, and three decomposition cases, timing results of the simulations and analysis of the
results are given.

Domain decomposition in finite-element methods

There is a lot of information on the domain decomposition methods and tools of finite
element/finite volume or unstructured mesh for load balancing, and communication performance
in the literature. Many tools developed at National Laboratories, and Universities such as,
Recursive Coordinate Bisection (RCB), Recursive Spectral Bisection (RSB), and heuristic
methods such as METIS [3], CHACO [4].) and JOSTLE [5] are widely used in disciplines such
as computational fluid dynamics, and computational structural mechanics. However, in crash
simulations, due to the presence of contacts, the domain characteristics dramatically change with
time and pose some unusual challenges in load balancing. It appears that the Recursive
Coordinate Bisections is the preferred method used for crash simulations due to the simplicity,
effectiveness and physical characteristics.

Description of the tools used

System Description:
All of the simulations for this exercise were done on an IBM p690 system. This is a shared
memory system with 32 POWER4+ processors that run at a clock speed of 1.5 GHz. POWER4+
is an advanced microprocessor that has 2 processors in a chip with a shared 1.5 MByte L2
cache. The system has a large L3 cache (128 MByte) shared by 8 processors. The system
supports small (4 KByte) and large (16 MByte) page support for the virtual memory. The details
of the processor and the system may be found in [6].

hpmcount and mpitrace tools:
The HPM (Hardware Performance Monitor) Toolkit [7] was developed by Luiz DeRose of IBM
Research for performance measurement of applications running on IBM systems (POWER3 &
POWER 4), based on the ‘pmapi’ library and consists of

- A utility (hpmcount) which starts an application and provides at the end of execution
wall clock time, hardware performance counter information, derived hardware metrics
and resource utilization statistics.

- An instrumentation library (libhpm), which provides instrumented programs with a
summary of output containing the above information for each instrumented region in a
program (resource utilization statistics

- A graphical user interface (hpmviz)

The hpmcount utility measures depending on the environmental variables set, provides all of the
details of the floating, and fixed point units and operations, L1, L2, L3-cache misses, Translation
Lookaside Buffer (TLB) misses, and estimates the GFLOPS of the application.

Walkup [8] at IBM Research developed a wrapper library called libmpitrace that is widely used
at many of the DOE and DOD laboratories on big POWER3 & POWER4 clusters, and has a
mechanism for profiling the MPI communication calls for applications written in C, C++, and

8th International LS-DYNA Users Conference Computing / Code Tech (1)

 12-3

FORTRAN. This is a very low overhead utility library that has to be linked with an existing
unstripped binary of an application, and upon execution of the application generates trace files
for each of the processes. Each of these trace files contain information on how much elapsed
time is spent on each of the message passing, and collective communication calls, size of the
messages, and number of calls made. A version of this libmpitrace library includes the libhpm
library mentioned earlier and, the combined library called the libmpihpm provides in addition to
the details of MPI communication profiles, the hardware performance counter details such as the
specifics of the floating and fixed point performance.

Trace Binary Creation
The LS-DYNA binary used for this study is mpp970_s_3535a_ibmpwr3_51, which is a 64-bit
single precision binary. For obtaining the tracing details, a new binary called lsdyna_trace was
built by linking with the libmpihpm library with mpp970_s_3535a_ibmpwr3_51. To estimate
the overhead of the profiling binary, runs were made with both the binaries for 10 time steps, and
it was found that there was no difference in elapsed time between these two binaries.

Simulations with the Trace Binary
The models studied here are two models – a publicly available three car collision model, and
another smaller model. With the three car collision model, 3 cases were studied – the original
decomposition, the merged contact model and a special decomposition that includes scaling, and
the decomposition of sliding interfaces. Studies on the second model were restricted to cases
with the sliding interface decomposition and scaling.

Three car crash model

Decomposition of the 3-car model on 16 CPUs

This model has a total of 794,780 elements (9,642 solid elements, 116 beam elements and
785,022 shell elements). The original model has 9 sliding interfaces, most of which are small
(less than 5000 slave nodes). LSTC modified this model by merging these 9 sliding interfaces to

Computing / Code Tech (1) 8th International LS-DYNA Users Conference

12-4

2 sliding interfaces, which is called the “merged model” in the following context. The merged
model can be obtained from the web site http://www.topcrunch.org. The simulation time in our
experiments is 50 milliseconds which correspond to 50000 time steps (full simulation for this
case would be 150 milliseconds). The experiments were done from 8 to 32 processors with the
three cases described earlier. All these simulations were done on the same 32-CPU p690 running
at 1.5 GHz system described earlier, using small (4KByte) pages, and with the default shared
memory system option “MP_SHARED_MEMORY=yes”.

0

5000

10000

15000

20000

seconds

8 16 32

of CPUs

Fig. 1 Elapsed Time

original

merged

special

Fig. 1 shows the comparisons of these 3 cases in terms of elapsed time for the simulation. In
these charts, ‘merged’ refers to the merged contact case, and ‘special’ refers to the special
decomposition (with the decomposition of sliding interface number 6 and default scaling) case.
The original case took significantly more elapsed time, and had poor scalability. The elapsed
time for the case with merged contacts was significantly better than the original case. The most
benefits were seen for the 8-CPU simulation. The special decomposition case has overall
improved performance and better scalability particularly for the larger number of processors,
compared to the merged contact case. For some of the other models, there is a significant
performance benefit with the special decomposition. The overall hardware counted GFLOPS for
the 32-CPU case improved by about 20% from original to the special decomposition case.

To measure the load balance, we compared the total numbers of floating point divides in each
processes case (the divide instructions take typically many more cycles (15 to 18) than other
floating point operations, and hence this disparity will be a good measure of load imbalance).
Table 1 shows the difference in the floating point divide (FDIV) operations between different
processes illustrating the load imbalance for the original model. For the 8 CPU case, there is 27%
variation between the least and the most FDIV operations between the processes. This
percentage variation stays roughly the same as we increase the number of processors.

For the merged contact case, and the special decomposition case, there is much less variation in
the number of FDIV operations (about 15%), which improves the scaling performance
noticeably as seen in Table2, that presents the results for the merged contact case. In addition,
the number of FDIV operations has decreased considerably (about 20%). This reduction in
variation of the total divide operations clearly alleviates some of the load balancing problems,
and significant performance gains in overall elapsed time are obtained in all of the 8, 16 and 32-
way simulations.

8th International LS-DYNA Users Conference Computing / Code Tech (1)

 12-5

of CPUs Fewest FDIV

instructions in
billions

Most FDIV
instructions in
billions

% variation

8 73 100 27
16 36 52 31
32 18 26 31

Table 1 Variation of floating point divide operations (original)

of CPUs Fewest FDIV
instructions in
billions

Most FDIV
instructions in
billions

% variation

8 67 78 14
16 34 39 13
32 17 20 15

Table 2 Variation of floating point divide operations (merged contact)

Total communication time is the time spent on all the message passing calls for each of the
processes in the simulation. There is a separate file for each process, and generally there will be
some variation between times spent on each of the calls between processes due to load balancing.
Figure 2 shows the total communication time for the process with the least communication time
(there is a big variance in communication time between processes due to load imbalance, and
typically the least communication time corresponds to the process that does the most work or
that has most floating point divide operations) for the 3 cases studied.

0

1000

2000

3000

4000

seconds

8 16 32

of CPUs

Fig.2 Total Communication Time

original

merged

special

For the merged contact case, and the special decomposition case, there is a significant reduction
in the total communication time. Also, the fraction of the total time spent on communication is
reduced by 50% for the 8 and 16 processors with the ‘merged’ and ‘special’ cases. For the 32-
CPU case, there is a significant reduction in the total communication time (about 30%
reduction).

The total communication time can be broken into essentially two parts – the time spent on ghost
cell updates (exchanging information between neighboring domains) and collective
communication time, such as a global summation, synchronization, broadcast and similar
operations. In the context of the MPI library, typically the ghost cell updates are done with
blocking or non-blocking sends and receives such as MPI_SEND, MPI_RECEIVE,

Computing / Code Tech (1) 8th International LS-DYNA Users Conference

12-6

MPI_ISEND, MPI_IRECEIVE calls. The global operations are done with calls such as
MPI_BARRIER (synchronization), MPI_ALLREDUCE (a reduction operation such as
summation done on the all the processors), MPI_BCAST (communicating a single value or a
vector to all the processes), MPI_ALLGATHER (collecting and distributing data globally) and
similar others. With a high performance network, the global communications are done very
efficiently, and typically more time on these global communication calls represent load
imbalance in the computations.

For the original decomposition case, Figure 4 shows the break up of communication time
between the ghost cell update (near neighbor communication), and the global communication
time.

0
500

1000
1500
2000
2500

seconds

8 16 32

of CPUs

Fig. 3 Distribution of
Communication Time (Original)

ghost cell
collective

0
200
400
600
800

1000
1200

 seconds

8 16 32

of CPUs

Fig4. Distribution of Communication
Time (Merged Contact)

ghost cell

collective

With the original decomposition case, for the 8 CPU case, the ghost cell update is quite
dominant, suggesting that imbalance is driven by computations in a domain to finish and waiting
for the posted messages to arrive. However, for the 16, and 32-CPU cases, the ghost cell updates
are roughly only a fraction (about 60% of the collective communication time for the 16-CPU
case, and about 40% for the 32-CPU case). Figure 4 shows the same distribution for the merged
contact case.

Clearly, the ghost cell update is done considerably faster for this case compared to the original
case. Even though the collective communication times are smaller than the original case (by at
least 20% or so), there is still some load imbalance that shows up relatively prominently as the

8th International LS-DYNA Users Conference Computing / Code Tech (1)

 12-7

processors increase. The 16 CPU simulations take considerably less time for ghost cell updates
for this case.

Next we will take a look at the message size distribution in the ghost cell update process for the
original case. The dominant message passing MPI call is the non-blocking sends (MPI_Isend).
Table 3 shows the details of the MPI_Isend calls. There are over 1 million MPI_Isend calls, and
most of these are short messages, meaning less than 3500 Byte. (As before, these correspond to
the process with the least total communication time). Clearly, the short messages dominate in
the message passing phase, implying that latency of the communication subsystem is also
important. Also, it appears that the percentage of smaller messages increases with the numbers
of processes. Typically, IP based communication have much higher latencies, compared to
proprietary switches, and shared memory systems. Also, the message volume increases for the
16 processor case – this behavior is nonlinear.

#of CPUs # of MPI_Isends in
millions

Average message
size in Byte

% of messages <
3500 Byte

8 1.31 2536 75
16 1.96 3705 76
32 2.15 1490 88

Table 3 Distribution of Message Sizes

Next we will take a look at the collective communication call details, since they appear to
dominate in the total communication time. The three collective communication calls MPI_Bcast,
MPI_Allreduce & MPI_Alltoall contribute to collective communication timings. Out of these,
MPI_Allreduce which does the global reduction takes a much bigger chunk of the collective
communication time (about 80% of the time). Table 4 gives the average message size, and time
taken for the MPI_Allreduce calls for the special decomposition case. From the well known
PALLAS communication benchmark, it is known that on an IBM p690 system, the time taken
for 500,000 MPI_Allreduce calls with about 1000 Byte messages is only 40 seconds. So the
extra time indicates load imbalance, and this implies that load imbalance is still an issue with the
improved decomposition.

of CPUs # of calls Ave size of message Time in seconds
8 567818 700 1100
16 567982 788 266
32 417350 1280 607

Table 4 MPI_Allreduce message sizes and elapsed time

Smaller Model

For the three car collision model, we only used a sliding interface decomposition for the special
decomposition case because scaling factors do not play a significant role in the overall
performance improvement for this model. To show the effect of both sliding interface
decomposition and scaling factors, a smaller model (about 200,000 elements) is chosen for this
experiment. The full simulation corresponds to 65,000 cycles, and the full simulation was done
on this model for the 2 cases: the default decomposition case, and the special decomposition

Computing / Code Tech (1) 8th International LS-DYNA Users Conference

12-8

case. The special decomposition included the decomposition on one large sliding interface with
an entry ‘sx 15’ for the scaling shift in the axial direction.

0
2000
4000
6000
8000

10000

seconds

8 16 32

of CPUs

Fig 5 Elapsed time comparisons

default

special

Figure 5 shows the elapsed time for both of these 2 cases for 8, 16 and 32 CPUs. The
computational performance in the ‘special’ case significantly improves with the increased
number of processors. The 32 CPU elapsed time decreased by about 40% with the ‘special’
decomposition. The ‘special’ case also scales significantly better (over 36%). A comparison of
the spread of number of floating point divide operations between the processes show that the
‘special’ case is a lot tighter, suggesting a much better load balancing.

0

500

1000

1500

2000

time in
sec

8 16 32

of CPUs

Fig 6. Total Communication Time

default

special

Figure 6 shows the total communication time of the process with the minimum total
communication time for both these cases. There is a dramatic reduction in the total
communication time with the ‘special’ case. The collective communication MPI calls appear to
dominate the total communication as before, and the collective communication time increase
with the increased number of processes. Clearly, for this model, there is a significant advantage
with the ‘special’ decomposition.

8th International LS-DYNA Users Conference Computing / Code Tech (1)

 12-9

Conclusions

We studied the communication patterns and costs of the message passing parallel version of LS-
DYNA (MPP-DYNA) using the IBM performance analysis tools. Our analysis suggests that the
work load imbalance is the bottleneck of the turn-around (elapsed) time of car crash simulation
using MPP-DYNA. Merging small contacts and special decomposition techniques may reduce
the turn-around time significantly for some models.

Acknowledgements

The authors would like to thank Dr. Jeff Zais for his comments and corrections.

References

1. Lin, Yih-Yih. “A Quantitative Approach for Determining the Communication and Computation Costs in
MPP LS-DYNA Simulations, FEA Worldwide News, January 2004.

2. Roh, Youn-Seo, and Fong, Henry, “Recent Developments of LS-DYNA Performance Optimization”, K-1-
33, 4th European LS-DYNA Users Conference

3. http://www-users.cs.umn.edu/~karypis/metis/
4. http://www.cs.sandia.gov/CRF/chac.html
5. http://www.gre.ac.uk/jostle
6. The POWER4 processor Introduction and Tuning Guide, http://www.ibm.com/redbooks SG24-7041-00,

2001
7. http://hpcf.nersc.gov/software/ibm/hpmcount/
8. http://www.hpcx.ac.uk/support/documentation/ IBMdocuments/mpitrace
9. http://www.topcrunch.org

Computing / Code Tech (1) 8th International LS-DYNA Users Conference

12-10

