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ABSTRACT 

A computational micro-mechanical material model of woven fabric composite 
material is developed to simulate failure. The material model is based on repeated 
unit cell approach. The fiber reorientation is accounted for in the effective 
stiffness calculation. Material non-linearity due to the shear stresses in the 
impregnated yarns and the matrix material is included in the model. Micro-
mechanical failure criteria determine the stiffness degradation for the constituent 
materials. The developed material model with failure is programmed as user 
defined subroutine in the LS-DYNA finite element code with explicit time 
integration. The code is used to simulate the failure behavior of woven composite 
structures. The results of finite element simulations are compared with available 
test results. The model shows good agreement with the experimental results and 
good computational efficiency required for finite element simulations of woven 
composite structures. 
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Introduction 

Woven composite materials are being used as primary structural components in many 
applications. Failure analysis of such structures is an essential part of the structure design. Along 
with their advantages however, the complex architecture of the woven fabric composites makes 
the analysis and the simulation of their failure behavior very difficult. Tremendous amount of 
works dedicated to the modeling of woven composites intends to predict the elastic properties of 
the materials and only few of them consider the failure behavior. The reason for this is the 
complex phenomena affecting the progressive failure behavior of woven fabric composites. 
These phenomena are the material nonlinearity of the matrix material combined with the 
geometrical nonlinearity of the fiber reorientation and the damage accumulation with stress 
concentration in the interacting constituents. 

 
The unit cell approach is employed in the analysis of the most material models of woven 

composite structures. The composite structure is divided into repeated cells, representing the 
properties and the behavior of the whole lamina. The classical 1-D models of Ishikawa and Chou 
[1-4] were extended to 2-D elastic models by N.K. Naik et al. [5-6]. Naik and Ganesh [6] 
considered the failure in the fill yarn direction of loading only. Naik and Ganesh [6] divided the 
sub-cells of their Representative Volume Cell (RVC) into many slices. They used different 
failure criteria for the different constituents: Tsai-Wu failure criterion for the fill strand, 
maximum strain criterion for the warp strand and maximum stress criterion for the pure matrix 
material. After the matrix material failure in the “gap” region, the fill strand is modeled as a 
curved cantilever slender beam. 

 
R.A. Naik [8] developed 3-D micro-mechanical material models of woven and braided 

fabric composite materials with failure. The undulated part of the yarn is discretized in many 
slices and a volume averaging technique based on iso-strain assumption is used to obtain the 
elastic properties of the RVC. Material shear nonlinearity for yarn and matrix materials is 
included and described by the three parametric equation of Ramberg-Osgood. The calculation of 
stress and strain in some directions is based on the curved beam on elastic foundation model for 
the undulated part of the yarns, and the straightening of the yarns is accounted for as geometrical 
nonlinearity in the nonlinear incremental solution. The failure criteria and the stiffness 
degradation scheme are presented by Blackketter et. al. [9]. Blackketter et. al. applied shear 
material nonlinearity and stiffness degradation to a finite element model of the woven fabric 
composite RVC and successfully simulated the damage propagation in tension and pure shear 
loadings in yarn direction. The micro-mechanical material model of R.A. Naik is incorporated in 
a computer code called TEXCAD, which is used for failure analysis of fabric composite 
materials. 

 
Tabiei et. al. [10] suggested a micro-mechanical material model of  woven fabric 

composite materials to simulate the progressive failure. The quarter sub-cell of the RVC is 
divided in many blocks. Micro-mechanical failure criteria for each constituent material in the 
block and corresponding stiffness degradation are adopted there. The material shear nonlinearity 
described by Hahn and Tsai is included in the model. 

 
The material models of woven fabric composites described above are suitable for 

nonlinear finite element failure analysis of composite structures, but because of the high degree 
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of RVC discretization, they are computationally inefficient to be applied in explicit finite 
element codes. The nonlinear finite element codes with explicit time integration are very 
powerful for large-scale simulations but because of the inherent small time step for stable 
solution they require high computational efficiency of the material models. This characteristic is 
an obstacle for complicated micro-mechanical models to be implemented in the explicit codes. 
The authors developed a computationally efficient and simplified micro-mechanical model of 
woven fabric composite materials [11] to predict their elastic properties. The advantage of the 
model is the lack of RVC discretization and good elastic property prediction. The choice of the 
RVC is intended to account for geometrical nonlinearity and simple and efficient technique for 
fiber reorientation was incorporated in the model [12]. The aim of this work is to develop the 
already formulated micro-mechanical material model of woven fabric composites with material 
nonlinearity and micro-mechanical failure in order to simulate the progressive failure of woven 
composites in finite element simulations using the explicit time integration. 

 

Micro-mechanical model 

The micro-mechanical material model and the homogenization procedure determining the 
elastic properties of woven fabric composite material employed in this work are described in 
[11]. For the sake of completeness the model will be shortly summarized here. The RVC of the 
woven fabric composite material is extracted from the deformed material pattern as it is shown in 
Fig. 1. The architecture of the woven fabric material is modeled by two over-crossed straight 
broken strands in elastic media (Fig. 2). The strands represent the fill and the warp yarns, 
respectively and the elastic media represents the matrix material. The orientation of the yarns is 
described by two angles: the braid angle θ and the undulation angle β (Fig. 3). The RVC is 
divided in four sub-cells: two anti-symmetric sub-cells consisting the fill yarn and two anti-
symmetric sub-cells consisting the warp yarn. 

 
The homogenization procedure for elastic properties begins with the stiffness matrix of 

each constituent material in each sub-cell. A degradation of the elastic moduli is applied for each 
constituent in the different sub-cells depending on the attained stress of the constituent. When 
failure is detected the degradation is applied only on the elastic moduli by multiplying them with 
a discount factor ]1,0(∈id  (i designates the elastic modulus to which it is applied). Degradation 

is not applied on the Poisson’s ratios. In order to obey the following relation: 

 3,2,1,, =
ν

=
ν

ji
EE j

ji

i

ij
 , (1) 

the yarn material is considered as orthotropic with the following stiffness matrix [13]: 
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where di , i = 2, 3, …, 6 , are the discount factors for yarn material, initially all of them equal 
unity, E1, E2, G12, G23 and ν12, ν21, ν23, are the elastic moduli and Poisson’s ratios of the yarn 
material respectively. The resin material has a simpler stiffness matrix as follows: 
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The Young’s modulus, E, and shear modulus, G, are degraded independently by different 
discount factors dE and dG, both initially equal unity. 
 

The elastic material properties of yarn and matrix materials are homogenized for each 
sub-cell and the stiffness matrix in direction of the material axes (Fig. 3) is obtained for each 
sub-cell at the first level of the homogenization procedure. The homogenization procedure is 
based on mixed, iso-strain and iso-stress, boundary conditions. The stiffness matrix of each sub-
cell is transformed to the RVC coordinate system (x, y, z in Fig. 2), using the current directional 
braid and undulation angles of the yarns. The effective stiffness matrix of the RVC is obtained 
after applying the second level of the homogenization procedure. Note that because of the 
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different stresses in the constituents of the different sub-cells, the degradation is different and the 
anti-symmetry of the sub-cells cannot be exploited.  

 
Having the effective stiffness matrix of the RVC, RVCC ][ , we can calculate the stress 

response of the material model at each time step n for nonlinear explicit finite element code: 

 }{][}{ ε=σ dCd RVC  , (4) 

 }{ 1 σ{+}σ{=}σ − dnn  , (5) 

where }εσ dd {and}{  are the stress and strain increments in the composite material respectively. 
In order to obtain the stress and strain in constituents one can use formulae (16) and (4) as 
described in [11]: 

 { } [ ] { } [ ] [ ] { }nksnkssskssks CCC ε−σ=ε −− 11  . (6) 

 { } [ ] { } [ ] { }ksknsknknnkn CC ε+ε=σ  , (7) 

Then applying (6) and (7) twice, once to obtain the stress and strain increments in the 
four sub-cells from the stress and strain increments of RVC and then again for each sub-cell to 
determine the stress and strain increments in the yarn and in the matrix material from the stress 
and strain increments of the sub-cell. For the first calculation the following equations are 
applied: 

 T
653 }{}{}{ σσσ=σ=σ dddkss  , (8) 

 T
421 }{}{}{ εεε=ε=ε dddknn  , (9) 

where k denotes the sub-cell ( k = f, w, F, W ) and the adopted contracted notation for stress and 
strain components is 1 ≅ 11, 2 ≅ 22, 3 ≅ 33, 4 ≅ 12, 5 ≅ 23, 6 ≅ 31. After applying (6) and (7) on 
(8) and (9) the iso-strain components (denoted by n) and the iso-stress components (denoted by 
s) of the strain and stress increment in each sub-cell, k, in the coordinate system of the RVC are 
obtained. Therefore, the full strain increment vector, }ε′d{ , and the full stress increment vector, 

}σ′d{ , are constructed for each sub-cell. These increment vectors are in the RVC coordinate 
system and they are transformed to the material coordinate system by means of the 
transformation matrix [T] as reported in [11],  

 }ε′⋅







=}ε′⋅=ε d

TT

TT
dTd {

][][

][][
{][}{

43
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The full strain and the full stress increment vectors of each sub-cell are divided into iso-
strain and iso-stress parts in order to obtain the stress and strain increments in constituent 
materials. The assumed iso-strain and iso-stress boundary conditions for the homogenization of 
the yarn and the matrix materials are as follows: 

 T
532 }{}{}{ σσσ=σ=σ dddkss  , (12) 

 T
641 }{}{}{ εεε=ε=ε dddknn  , (13) 

where k now denotes the constituent materials of the sub-cell ( k = y, m ). Applying (6) and (7) 
but now on (12) and (13) again, all components of the strain and stress increments in the 
constituent materials are obtained and the full stress increment vectors in the yarn and the matrix 
materials can be constructed as follows: 

 T
65432 }{}{ yyyyyyy ddddddd σσσσσσ=σ 1 , (14) 

 T
65432 }{}{ mmmmmmm ddddddd σσσσσσ=σ 1 . (15) 

The total stress in the constituent materials is accumulated at each time step, n, for each sub-cell 
and it is kept as historical variable: 

 }σ+}σ=}σ}σ+}σ=}σ −−
m

n
m

n
my

n
y

n
y dd {{{,{{{ 11 . (16) 

The orientation of the fill and the warp yarns is determined in the coordinate system of 
RVC by the braid and the undulation angles. They are denoted by subscript f or w for the fill and 
the warp yarn, respectively. We can construct directional vectors for each of the yarns in order to 
rotate them to the new position at each time step, n, to obtain the updated braid and undulation 
angles [12]: 

 { } { }Tsinsincoscoscos ffffffq βθβθβ=  , (17) 

 { } { }Tsinsincoscoscos wwwwwwq βθβθβ=  . (18) 

The directional vectors are rotated and then normalized by means of the approximate 
deformation gradient tensor, [F]: 

 { } [ ]{ } { } [ ]{ }wwff qFqqFq =′=′ ,  , (19) 

 { } { } { } { } { } { }wwwfff qqqqqq ′′=′′= /,/  , (20) 

where 
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The new orientation angles of the yarns are determined from the updated directional vectors: 

 3
1

3
1 sin,sin wwff qq −− == ββ  , (22) 

 ( ) ( )12
1

12
1 /tan,/tan wwwfff qqqq −− =θ=θ  . (23) 

Initially, °−=θ°=θβ=β=β 45,45,0 wfwf . Note that in this technique the orientation of 

the yarns depends on the global strain increment of the RVC, not on the strain increment of the 
sub-cells. 
 

Material Nonlinearity 

The shear material nonlinearity of composite materials is recognized by many authors [6-
10] to be important for failure analysis. Material nonlinearity could govern the behavior of 
woven composite material in some certain loadings. The three parameters equation of Ramberg-
Osgood is adopted here to describe the shear nonlinear behavior of the constituent materials in 
the sub-cells: 
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where G0 is the initial shear modulus, S is the ultimate shear strength, and p is a shape parameter 
which can be determined by a curve-fit to experimental shear stress-strain data.  

In the incremental solution of the nonlinear finite element method, the tangential shear 
modulus is used in the constitutive equations relating the stress and strain increments as follows: 

 γ=τ dGd t  , (25) 

where 
γ
τ=

d

d
Gt  is the tangential shear modulus. The tangential shear modulus can be obtained as 

a function of the shear strain, )(γ≡ tt GG , by differentiating equation (24). In the presented 

material model of woven fabric composite materials, the total stress components of the 
constituent materials are calculated only for failure analysis and they are kept as history variables 
for further accumulation and analysis. The total shear strain components are missing, so that the 
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tangential shear modulus as a function of the shear stress, )(τ≡ tt GG , has to be derived. The 

inverse function, )(τγ≡γ , can be easily found from (24) as follows: 
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and then the tangential shear modulus can be obtained: 
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The shear material nonlinearity can be introduced in the material model as discount 
factors for the shear moduli from equation (27): 

 
0G

G
d t

s =  . (28) 

The instantaneous discount factors for the shear material nonlinearity of the yarn material, 

654 and, sss ddd , are calculated from the stress components yyy
654 and, σσσ , respectively by 

the following formulae:  
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where py is the shape parameter of Romberg-Osgood equation and Sl and St are the longitudinal 
and transverse shear strength of the yarn material, respectively. Similarly, the instantaneous 
shear discount factor for the matrix material, dsG, is calculated from the octahedral shear stress, 
τ0: 
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where pm is the shape parameter for the matrix material, S is the shear strength and the octahedral 
shear stress is calculated from the stress components of the matrix material by using the 
following formula: 
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Note that when explicit time integration is utilized the material stiffness matrix is updated 
with relatively high frequency and consequently the material nonlinearity is properly captured. 

 

Failure criteria and stiffness degradation 

The failure criteria and stiffness degradation scheme is adopted almost entirely from 
Blackketter et. al. [9]. The isotropic matrix material in each sub-cell is checked for failure by 

testing the maximum of the principle stresses, m
III

m
II

m
I σσσ ,, : 

 if  m
m
III

m
II

m
I X>σσσ },,max{  then 20.0,01.0 == fGE dd  , (32) 

where Xm is the tensile strength of the matrix material and dE, dfG are the discount factors. The 
failure criteria and the degradation scheme for the yarn material are given in Table 1.  The failure 
in the axial direction of the yarn leads to fiber breakage. This kind of failure is considered as an 
ultimate failure of the composite material. 
 

Note that the stress component in the longitudinal direction of the yarn is multiplied by 
stress concentration factors, ct and cc for tension and compression respectively (see Table 1). The 
stress distribution in the yarn constituent is investigated in [15] and [16]. It is obvious that the 
adopted simplified architecture of woven fabric composites is not able to predict the stress 
concentration, which is important in tension and compression in the direction of yarns. It is 
difficult to justify the value of concentration factors with respect to the adopted material model 
architecture from some geometrical considerations. However, it is possible to vary the stress 
concentration factors in order to fit the ultimate material model failure to the experimental failure 
of the woven fabric composite. This should be done in tension and compression in the 0/90 
degree loading. 

 
The stress concentration factor affects the ultimate failure point in the stress-strain 

diagram for tension or compression in 0/90 degree loading. If there is no failure of transverse 
yarns in 0/90 degree loading the ultimate failure point is at about the ultimate longitudinal strain 
of the yarn material for stress concentration factor equals unity. Test results of woven fabric 
composite materials in the mentioned loading condition show that the ultimate strain in the 
direction of loading is quite lower than the ultimate longitudinal strain of the yarn material. This 
is because the failure of the undulated yarns happens earlier than that of the straight yarns in 
longitudinal tension. The stress concentration in the undulated yarns and the combination of 
tension with bending of the undulated yarns, which are like a curve beam in an elastic foundation 
(the matrix material), lead to the lower ultimate strain.  

 
The behavior of woven fabric composite materials under shear for 0/90 degree loading 

(or +45/−45 degree tension/compression) is governed by the matrix material nonlinearity. The 
ultimate failure occurs as a result of high strain and the lost of integrity of the composite 
material. In order to predict that failure mode, an integrity failure criterion is introduced in the 
failure model. The total strain of the RVC is accumulated at each time step and it is kept as a 
history variable. The maximum principle strain and the maximum shear strain of the RVC are 
calculated and examined at each time step. If one of them exceeds the ultimate strain for the 
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integrity, Eu, an ultimate failure is assumed in the material model and the material is considered 
totally failed. 

Numerical examples 

The described micro-mechanical material model of woven fabric composite materials is 
programmed first in the MATLAB software. The Adopted incremental approach for nonlinear 
solution was similar to the one described in [12]. The Graphite/Epoxy plain-woven fabric 
composite material (AS4/3501-6) under tension and pure shear loadings, as it is described in [8] 
and [9], is considered as validation example for the developed material model with failure. The 
elastic and strength properties of the impregnated yarn (Vf = 0.7) are as follows: 

 

 

.55,97,206,152

,2000,2550,78.2,5.0,24.0

,4.3,7.5,1.10,151

2312

231221

MPaSMPaSMPaYMPaY

MPaXMPaXp

GPaGGPaGGPaEGPaE

tlct

ct

====
====ν=ν

====
 

The elastic properties and the strength of the matrix material are: 

 .110,159,34.2,34.0,7.1,4.4 MPaSMPaXpGPaGGPaE mm ====ν==  

The total volume fraction of the fibers in the composite material is 60% and since the yarns fiber 
volume fraction is 70%, the volume fraction of the impregnated yarn material in the material 
model is considered 85.7%. The initial undulation angle of the yarns is 1 degree and the initial 
braid angle is 45 degree. The stress concentration factor is taken to be 1.6 for the yarns. The 
ultimate strain for the integrity failure is assumed to be 6%. 

The material model programmed in MATLAB calculates the stress response of the 
woven fabric composite due to steady strain loading with a constant strain increment in tension 
and in pure shear. The result is compared to the experimental data from [8,9] and to the 
predictions from Blackketter et. al. [9] and R.Naik (TEXCAD) [8]. The result of tension loading 
is given in Fig. 5. The stress response to the pure shear loading is shown in Fig. 6. The material 
model has slightly softer behavior in shear than the experimental result similar to all other 
material models presented. The stress response of the material model in tension almost coincides 
with the experimental result.  

 
The developed micro-mechanical material model of woven fabric composite materials is 

also programmed as a user defined subroutine in the LS-DYNA commercial finite element code 
with explicit time integration. The material model can be used for shell as well as for solid 
elements. Trying to justify the model in various and more complicated loadings, we found 
experimental data for 5-harness satin IM7/8551 7A Graphite/Epoxy in tension, compression and 
bending [17]. Although, the present micro-mechanical model represents the plain-woven fabric 
composite architecture, it is applicable for some other fabric architectures also. The undulated 
portion of the yarns is not discretized in details in the model and the yarns are not necessarily 
orthogonal. In this way, the homogenization technique applied is suitable for fabric architectures 
like satin woven fabrics and some of the braided fabrics.  

 
The test specimen of the composite material is modeled by means of shell elements. The 

elastic properties of the yarns and their strength are as follows: 
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.98,98,200,56

,2700,3500,30.0,32.0

,4.8,4.8,2.11,203

2312

231221

MPaSMPaSMPaYMPaY

MPaXMPaX

GPaGGPaGGPaEGPaE

tlct

ct

====
===ν=ν

====
 

The elastic properties and the strength of the resin epoxy are: 

 .3.98,9.84,35.0,28.1,45.3 MPaSMPaXGPaGGPaE mm ===ν==  

The stress-strain curve obtained in the finite element simulation for 0/90 degree tension is 
compared to the experimental curve and they are shown in Fig. 7. The tensile stress versus 
transverse strain is given on the left side of the figure and the tensile stress versus longitudinal 
strain is on the right side. The stress-strain curve of the simulation in +45/–45 degree tension is 
very close to the experimental curve as depicted in (Fig. 8). The stress concentration factor for 
compression is considered to be 2.98. The stress-strain curves for 0/90 degree compression 
loading are given in Fig. 9. The results for +45/–45 degree compression are shown in Fig. 10. 
Using the adjusted in tension and compression parameters for the material model, four point 
bending of a specimen in 0/90 and in  
+45/–45 degree orientations are simulated and compared to the experimental data. The results are 
given in Fig. 11 and Fig. 12, respectively. The results of the simulations are in very good 
agreement with the experimental results. 

 

Conclusions 

A micro-mechanical material model of woven fabric composite materials with failure is 
developed. The model is computationally efficient and its implementation in the LS-DYNA 
nonlinear finite element code shows the potential of the model to be used in large-scale 
simulations of composite structures. The material model is augmented by geometrical 
nonlinearity of fiber reorientation and by shear material nonlinearity. These nonlinearities with 
the adopted failure criteria and stiffness degradation scheme make the model suitable for finite 
element simulations of composites in various and complex loadings. The material model stress 
prediction and failure are in very good agreement with the experimental data of woven fabric 
composite materials under different loadings. 
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Table 1. Failure criteria and degradation scheme for yarn material. 

Discount coefficients Failure  
mode 

Failure 
condition d2 d3 df4 df5 df6 

Longitudinal  
tension t

y
t Xc >σ1  fiber breakage - ultimate failure 

Longitudinal 
compression c

y
c Xc >σ− 1  fiber breakage - ultimate failure 

Transverse tension,  
2-direction t

y Y>σ2  0.01 1.00 0.20 1.00 0.20 

Transverse compression, 
2-direction c

y Y>σ− 2  0.01 1.00 0.20 1.00 0.20 

Transverse tension,  
3-direction t

y Y>σ3  1.00 0.01 0.20 1.00 0.20 

Transverse compression, 
3-direction c

y Y>σ− 3  1.00 0.01 0.20 1.00 0.20 

Longitudinal shear,  
12-plane l

y S>σ4  0.01 1.00 0.01 1.00 1.00 

Transverse shear,  
23-plane t

y S>σ5  0.01 0.01 0.01 0.01 0.01 

Longitudinal shear,  
31-plane l

y S>σ6  1.00 0.01 1.00 1.00 0.01 
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Representative
 Volume Cell

 

Fig. 1. Woven composite interlacing pattern. 
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Fig. 2. Micro-mechanical model. 

 

 

 

x

y

z 1

2

3

θ
βθ

β

 

Fig. 3. Yarn orientation. 
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Fig. 4. Material model flowchart. 
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Fig. 5. Stress-strain response of the model in 0°/90° tension. 

 

Experiment

WYO3D

TEXCAD

Present

Strain

S
tr

es
s 

(M
P

a)

 

Fig. 6. Shear stress-strain response of the model in 0°/90° pure shear. 
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Fig. 7. Longitudinal stress vs. transverse and longitudinal strain in 0°/90° tension. 

 

-4 -3 -2 -1 0 1 2 3 4
0

50

100

150

200

250

300

Strain (%)

S
tr

es
s 

(M
P

a)

Experiment

Simulation

 

Fig. 8. Longitudinal stress vs. transverse and longitudinal strain in ±45° tension. 
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Fig. 9. Longitudinal stress vs. transverse and longitudinal strain in 0°/90° compression. 
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Fig. 10. Longitudinal stress vs. transverse and longitudinal strain in ±45° compression. 
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Fig. 11. Longitudinal stress vs. transverse and longitudinal strain in 0°/90° bending. 
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Fig. 12. Longitudinal stress vs. transverse and longitudinal strain in ±45° bending. 
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