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ABSTRACT 
 
Using Intel software tools, including Intel® VTune™ Performance Analyzer and Intel® Fortran Compiler, we 
analyze and tune the performance of MPP LS-DYNA* for clusters of Intel processors. We discuss the impact of 
various performance features of Intel processor-based systems, including vector/streaming instructions, on real LS-
DYNA workloads. We compare single-precision performance and measure the impact of various cluster 
interconnect technologies. 
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INTRODUCTION 
 
Clusters of relatively inexpensive, general-purpose computers are now able to perform tasks that once required 
specialized (and expensive) hardware.   Using software such as the MPI implementation of LS-DYNA, a modest 
cluster of Intel® Xeon™ processors can perform analyses both more quickly and more cost effectively than the 
supercomputers that were until recently used for this purpose.   Apart from faster CPUs, the main opportunities for 
improvement lie in the cluster interconnect technology (both hardware and software) and in the performance of the 
software running on each node.  We have investigated both areas, and the latest versions of LS-DYNA now 
incorporate some improvements resulting from these investigations.    

Conventions 
Within this paper, we have adopted the following conventions.  Unless otherwise stated, all software commands and 
command-line options are for software running on the Red Hat* Linux operating system.  Performance is measured 
as elapsed (wall-clock) time to complete a workload, however elapsed times are not stated.  The performance of 
systems and software are compared and expressed as ratios.   The configurations under consideration are stated 
along with the performance data.   While most of the workloads used for performance measurement and analysis are 
publicly available, others are not.   The workloads used are described in the appendix.  

Benchmark Disclaimer 

Performance tests and ratings are measured using specific computer systems and/or components and reflect the 
approximate performance of Intel® products as measured by those tests. Any difference in system hardware or 
software design or configuration may affect actual performance. Buyers should consult other sources of information 
to evaluate the performance of systems or components they are considering purchasing. 
 
Because LS-DYNA is a large, complex application with a broad range of features, the measurements of performance 
enhancements discussed in this paper are specific to the workloads used. 

APPROACH 
 
In mid-2001, we became aware that the performance of a cluster of Intel® Xeon™ processor-based systems running 
LS-DYNA (v940.2a, single-precision), while good, did not meet our expectations.  Accordingly, we undertook an 
analysis of the problem and worked with engineers at LSTC to effect improvements.   We investigated both single-
node and cluster performance.  Single-node performance improvements have focused primarily on the compilation 
of LS-DYNA*; cluster performance has been investigated within the context of MPI implementations and 
interconnect technology.  We worked in both the Linux* and Microsoft Windows* environments, but focused 
primarily on the former.  

SINGLE-NODE PERFORMANCE 
 
Performance of clusters of Intel® Pentium® III processors and Pentium® III Xeon™ processors running LS-DYNA 
was generally considered to be good, but Intel® Xeon™ processors and Intel® Pentium® 4 processors did not meet 
our expectations for relative performance on systems with these faster processors and their increased memory 
bandwidth.  Important differences exist between the micro-architectures of these processor families; accordingly, 
our investigation focused on these differences.   The primary tools for addressing such architectural differences are 
compilers.  Intel has developed a family of compilers (available for both the Linux and Microsoft Windows* 
operating systems) for precisely this reason; these compilers are aware of the performance characteristics of broad 
range of Intel processors and produce code specifically tuned for them.   Since we desired that our work ultimately 
result in performance enhancements to the LS-DYNA product, we placed the following constraints upon this effort:  
first, the resulting binary should run well on a broad range of processors; second, only minimal source code 
modifications would be considered.  To include the overhead of the MPI library, but avoid any affects due to cluster 
interconnects, we used the MPI version for this testing and analysis, but confined our tests to a single node with two 
CPUs. 
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Features of Intel® Pentium® 4 processors  and Intel® Xeon™ processors 

Intel® Pentium® 4 processors and Intel® Xeon™ processors share a common microarchitecture (called Intel® 
NetBurst™) and a similar feature set.  The primary difference is that Intel® Xeon™ processors are intended for 
multiple-CPU systems, whereas Intel® Pentium® 4 processors are designed for single-CPU systems.   The 
processors have similar performance characteristics, and the performance work described in this paper applies to 
both processor families.  The following are some common characteristics of the current generation of these 
processors1: 
 

• Intel® NetBurst™ microarchitecture 
• 400 MHz System Bus 
• Level 1 Execution Trace Cache 
• 8 KB Level 1 Data cache 
• 512 kB Level 2 Advanced Transfer Cache2 - 8-way set associative, 128 Byte lines 
• Streaming SIMD Extensions 2 (SSE2) [superset of SSE] 

 
 
SSE2 instructions extend the SSE instructions implemented in the Intel® Pentium® III processor.  They incorporate 
single-precision floating-point vectors (length 4), double-precision floating-point vectors (length 2), and integer 
vectors of various lengths.   The aggregate vector length for all data types is 16 bytes, corresponding to the size of 
the registers used to implement these instructions.  For more information on these instructions see IA-32 Intel® 
Architecture Software Developer’s Manual, Volume 1: Basic Architecture. 

Targeting Intel® NetBurst™ Microarchitecture processors 

The Intel® Fortran Compiler is able to generate SSE2 instructions, and effectively using these vector instructions 
was critical to success.  Since we focused on the single-precision version of LS-DYNA* and wished to maintain 
binary compatibility with Intel® Pentium® III processors, we constrained our work to the SSE subset.   The 
compiler is also able to optimize its code scheduling for particular processor families while maintaining 
compatibility with others. We used this feature to target the Intel® Pentium® 4 and Xeon™ processors.  The 
compiler options used to accomplish this are as follows: 
 

• -xK : use SSE instructions (compatible with Intel® Pentium® III or later processors) 
• -tpp7 : optimize instruction generation for Intel® Pentium® 4 or Xeon™ processors. 

 
Using these options with the Intel® Fortran Compiler 5.0 for Linux*, we were able to achieve a modest 
improvement in LS-DYNA 940.2 performance, in the range of 6% to 9%.  This gain was less than we expected, but 
suggested that we were on the right path.   Because LS-DYNA version 960 was nearing release, we refocused our 
efforts on that version. 

Hotspot Analysis 

The next step was to use the Linux hierarchical profiler, gprof, to identify the parts of LS-DYNA 960 that were 
taking the most time.  From its output, we determined that over 60% of the run time in our Small Car workload was 
spent in only six functions: 

Table 1: Function Hotspots 

Function Name %Time 
shl24s 16.24 
trnfbt 14.32 
tranbt 11.58 
blytsy 10.35 

elem2d 6.96 
tbscls 5.52 

                                                           
1 A broader overview of processor features may be found in Intel® Xeon™ Processor with 512 KB L2 Cache for 
Applied Computing Product Brief. 
 
2 Earlier processors in this family have 256 kB Level 2 cache 
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Repeating the analysis with a broader set of workloads confirmed the importance of these functions and identified a 
few more.  By comparing this data with profiling data gathered on other systems, we determined that several of 
these functions were running approximately half as fast as we might expect. 

Root Cause Analysis  

To systematically identify and correct the performance problems, we turned to the Intel® VTune™ Performance 
Analyzer (hereafter referred to as VTune™). Intel® Pentium® 4 and Xeon™ processors incorporate programmable 
hardware performance counters that can be used to monitor a variety of events, from clockticks (the processor’s 
internal clock) to cache behavior.  Using VTune, occurrence of these events can be correlated closely to small 
groups of instructions in program code. If the executable contains debug information, VTune is also able to map 
these events to specific areas of program source code.  VTune enabled us to quickly identify not only the functions 
that took the most time, but also the responsible lines of code within these functions.    Once problem areas were 
identified, we began the search for causes.  This search was fairly extensive, but focused initially on the following 
kinds of events: 
 

• Mispredicted branches 
• Level 2 cache misses 
• Level 1 data cache misses 
• Trace cache misses 
• Store-forward 
• Split cache lines 
• 64K aliasing 

 
These events – and techniques to ameliorate their effects – are described in the Intel® Pentium® 4 and Xeon™ 
Processor Optimization Reference Manual, 

 
To evaluate the effect of these events, we used VTune™ to map both the occurrence of clockticks and the events 
under consideration to specific areas of code.  Areas where the elapsed time (clocktick count) is disproportionately 
high can be performance problems or simply areas of code that execute frequently.  Potential causes of problems are 
suggested by corresponding high values in the event counters listed above.  For example, a disproportionate number 
of L2 cache misses per clock tick would suggest a cache utilization problem.  While all of these events occur to 
some extent in LS-DYNA* (and indeed in nearly all programs) VTune showed that most of them did not occur with 
undue frequency, if at all, in the problem areas of LS-DYNA.     

Thermal Throttling 

Intel® Pentium® 4 and Xeon™ processors have the ability to reduce their clock speed to prevent overheating, 
resuming normal operation once they are sufficiently cooled.  Although this thermal throttling should not occur in a 
properly cooled system, we checked for and ruled out its presence.   VTune has no mechanism to check for thermal 
throttling, so we used a special tool (not generally available) to determine that thermal throttling was not taking 
place. 
 

Vectorization 

Since the –xK compiler option enables the compiler’s vectorizer, we checked to determine how effectively the 
vector SSE instructions were being used, using VTune to count the relative number of vector SSE, scalar SSE, and 
X87 instructions retired. Only vector SSE instructions lead to improved throughput.  We discovered that the slowest 
parts of the functions identified above made little if any use of these vector instructions.   We focused on the 
slowest, most time-consuming loop and observed that it performed substantial data movement.  Each iteration, read 
from several arrays, calculated a few intermediate results, and stored results to 18 separate arrays. Because the loop 
bounds were passed as parameters to the function and the number of arrays accessed was relatively large, the 
compiler was unable to determine if this loop would perform well if vectorized and so declined to do so.   
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Write Combining 

Examining the memory addresses in a debugger revealed that each of the target addresses stored to in one loop 
iteration lay on a different cache line. Intel® Pentium® 4 and Xeon™ processors perform write combining in 
hardware, aggregating a number of small, contiguous writes into a single, larger write to make better use of cache 
bandwidth. Non-contiguous storage patterns such as this can preclude write combining, as the Intel® NetBurst™   
microarchitecture maintains only six buffers for write combining and a large number of target addresses results in 
frequent flushing of these buffers. The Intel® Pentium® 4 and Xeon™ Processor Optimization Reference Manual 
recommends applying loop fission in such cases, but vectorization can also help. Scalar single-precision floating-
point instructions can store or load only four bytes at a time, whereas vector instructions can load or store 16 bytes. 
Using vector instructions effectively reduces the number of store operations by a factor of four, making more 
effective use of write combining and available cache bandwidth. 
 

Solution 

Manually splitting many loops would violate our goal of minimizing source code modifications, so we applied it on 
only the most critical location and focused instead on increased vectorization as the primary mechanism for 
improving performance.   The Intel® Fortran Compiler can report which loops it vectorizes, which it does not, and 
why.  Enabling this report, via the –vec_report3 compiler option, indicated that the compiler believed that 
vectorization of these key loops would be inefficient. Fortunately, the compiler supports a directive 
(!DIR$VECTOR ALWAYS) to override this heuristic.  After applying this directive, we observed a roughly four-
fold increase in the performance of the most critical loop.  We reproduced the behavior in a separate test case, to 
ensure the future releases of the compiler will be able to identify this optimization without the use of directives. 
Additional vectorization yielded similar improvements. The resulting improvement in LS-DYNA* performance on 
our test cases is shown below. 

Cache Blocking 

With the main performance problem resolved, we turned our attention to cache blocking.  LS-DYNA blocks its data, 
gathering it into several contiguous arrays of size N to achieve better cache utilization and facilitate vectorization.    
Cache size is a consideration; it is highly advantageous for all the blocked data to fit within the L2 cache.  Within 
that constraint, it is advantageous to use the largest possible blocking size.  The latest Intel® Xeon™ processors 
(and Intel® Pentium® III Xeon™ Processors) have 512KB L2 cache, twice that of their predecessor.   Accordingly, 
we tuned the cache blocking for this size cache.  For some workloads, this may result in slight performance 
degradation on earlier processors with smaller cache. We also tuned cache blocking to improve utilization of the 
processor’s floating-point vector instructions. We tested a broad range of blocking sizes and observed that the best 
performance was achieved when the array size, N, was an integer multiple of the SIMD vector size (four).   

Results 

The results of this optimization work were incorporated in LS-DYNA 960 build 1145, which was built with the 
Intel® Fortran Compiler V6.0.  To illustrate the difference, we compared this with build LS-DYNA 960 build 447, 
which was built with an earlier version of the Intel® Fortran Compiler and without any of the tuning described 
above.  The tables below illustrate the relative performance of these two builds, on systems with pairs of three 
different Intel® Xeon™ processors.  Numbers greater than 1.0 indicate increased performance of LS-DYNA 960 
build 1145 over LS-DYNA 960 build 447. 
 
The latest Intel® Xeon™ processors were the primary focus of our optimization efforts.   Cache blocking in build 
1145 was tuned for the 512KB L2 cache size of these processors 
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Table 2: Relative Performance 
LS-DYNA* 960 447 P4 vs. LS-DYNA* 960 1145 SSE 
Two 2.2 GHz Xeon™ Processors (Configuration A) 

Small 
Car A 

Caravan Bogie20 Pendulum PCB rp_lsd93 Small 
Car B 

1.31 1.20 1.14 1.01 1.25 1.19 1.45 
 
 
Since a specific goal of this effort was to maintain compatibility with Intel® Pentium® III processors, we evaluated 
the two builds of LS-DYNA on a system equipped with two 1.4 GHz Intel® Pentium® III Xeon™ processors.   
These processors also have 512KB L2 cache. 
 
 
 
 

Table 3 Relative Performance  
LS-DYNA* 960 447 vs. LS-DYNA* 960 1145 SSE 

 Two 1.4 GHz Intel® Pentium® III Xeon™ Processors (Configuration C) 

Small 
Car A 

Caravan Bogie20 Pendulum PCB rp_lsd93 Small 
Car B 

1.09 1.13 1.11 1.04 1.05 1.06 1.34 
 
 
 
Finally, since this effort was specifically focused on improving LS-DYNA performance on Intel® Xeon™ 
processors, it is interesting to compare the performance measured at the beginning of this effort (LS-DYNA 960 
447, 1.7 GHz Intel® Xeon™ processors) against the performance measured at the conclusion (LS-DYNA 960 1145, 
2.2 GHz Intel® Xeon™ processors).    The combination of updated software and faster processors demonstrates 
improvement well above that expected from clock speed improvements alone (2.2 / 1.7 = 1.294) across all six tested 
workloads. 
 
 
 

Table 4: Overall Change in Performance 
Two 1.7 GHz Intel® Xeon™ Processors (Configuration B), LS-DYNA 960 447 P4  

Two 2.2 GHz Intel® Xeon™ Processors (Configuration A), LS-DYNA 960 1145 SSE 

Small 
Car A 

Caravan Bogie20 Pendulum PCB rp_lsd93 Small 
Car B 

1.77 1.71 1.52 1.41 1.68 1.84 1.96 

 



7th International LS-DYNA Users Conference Computing Technology 

 18-13 

 

Table 5: System Configurations 

Configuration A 

Two 2.2 GHz Intel ®  Xeon™ processors 

512 KB L2 cache 

1 GB 800MHz RDRAM  

IWILL* DX400-SN motherboard 

 Intel® 860 chipset 

 18 GB SCSI-LVD Disk 

Red Hat* Linux 7.2 

LAM MPI 6.5.2 

Configuration B 

Two 1.7 GHz Intel® Xeon™ processors 

256KB L2 cache 

1 GB 800MHz RDRAM  

IWILL* DX400-SN motherboard 

Intel® 860 chipset  

18 GB SCSI-LVD Disk 

Red Hat* Linux 7.2 

LAM MPI 6.5.2 

Configuration C 
Two 1.4 GHz Intel® Pentium® III processors 

512KB L2 cache 

1 GB 133MHz SDRAM  

Intel® Server Board SCB2 

ServerWorks* Enterprise Serverset* III HE-SL chipset 

18 GB SCSI-LVD Disk 

Red Hat* Linux 7.2 

LAM MPI 6.5.2 
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Cluster Scaling 
 

The MPP version of LS-DYNA* is capable of exploiting clusters of connected systems to improve turnaround time 
for suitably large analyses. The speed of the cluster interconnect – normally characterized by its latency and 
bandwidth – largely dictates the extent to which the completion time of a given workload can be further decreased 
by utilizing additional processors. Low latency, the time to send an empty message from one host to another in the 
cluster, and high bandwidth, the asymptotic transfer rate for large messages, are characteristics normally found in a 
high-performance interconnect. 
 

Interconnects for Message Passing 

Users of MPP-DYNA* on clusters benefit from high-speed interconnects through shortened turnaround time on 
jobs. While a number of proprietary interconnects are available that each handily outperform standard Ethernet, no 
single interconnect has emerged as standard. As a result, many clusters are simply connected using standard 
100BaseT Ethernet*. 
 
While the performance of the proprietary interconnects is often excellent, there exist some drawbacks in their use for 
both software vendors and end users. Normally, each interconnect is accompanied by its own MPI libraries, forcing 
software vendors unable to support all available interconnects to choose a subset, leaving some unsupported. Worse, 
the myriad choices drive some vendors to support only the least common denominator, MPI over TCP/IP, to achieve 
broader hardware support at the expense of performance. Likewise, end users suffer when their chosen interconnect 
is supported by only a subset of the software packages needed in their work. Proprietary interconnects have other 
disadvantages, including limitations on simultaneous multi-user access or limited ability to simultaneously handle 
MPI, TCP/IP, and NFS or other shared I/O traffic. 
 

InfiniBand Architecture 

A new industry standard interconnect architecture, InfiniBand Architecture* (IBA), has several key features that 
give it the potential to address these shortcomings. Most important among these is IBA’s notion of virtual channels, 
which presents to each process the illusion of a dedicated interconnect. This, when paired with IBA’s low latency, 
high bandwidth design, allows multiple users and the operating system to simultaneously and transparently share a 
single interconnect. On IBA-connected systems, networking, message passing, and shared disk I/O traffic run over a 
single wire. Further, because IBA is a multi-vendor, industry standard, host adapters and switches from multiple 
sources interoperate, presenting a single and common high performance interconnect for end users to install and 
software vendors to support. 

Message Passing over InfiniBand Architecture 
To demonstrate the impact of a fast interconnect on LS-DYNA* performance, we measured the parallel speedup of 
a small workload on an cluster connected with both 100BaseT switched Ethernet and Intel InfiniBand Architecture 
host channel adapters. We used Argonne’s MPIch implementation with NCSA’s VMI 1.0 abstract device 
implementation. VMI differs from most MPIch devices in its ability to target multiple interconnects without 
rebuilding the application. This approach offers a key advantage for software vendors, since a single validated 
executable can target both standard and proprietary interconnects, while maintaining the performance characteristics 
of each. Rather than hard code the communications library, VMI instead implements a thin communication wrapper 
layer that determines the fastest interconnect between each pair of processes and automatically loads shared libraries 
to support that connection. VMI provides communication libraries for TCP/IP, shared memory, and a number or 
high-speed interconnects, including InfiniBand adapters via the Intel™ Virtual Interface Provider Library (VIPL)3. 
New communication libraries are simple to write. For this work, we used shared memory to communicate within 
each dual-processor node and compared TCP/IP to InfiniBand for inter-node communication. 
 

                                                           
3 These tests were performed on Microsoft Windows 2000 Advanced Server, due to the earlier availability of IBA 
VIPL libraries on this platform. VIPL is now available for both Windows and Linux. 
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Point-to-Point Latency and Bandwidth 

We began by measuring the pair wise, inter-node performance of TCP/IP over 100BaseT and VIPL over IBA, using 
a standard “ping-pong” test, in which a message is sent from one host to another, then echoed back to the original 
host. The total time is measured for a range of message sizes, and half the round-trip time is taken as the one-way 
measurement. The results are presented in Figure 1. The y-intercept of the curves is the latency, the time to send an 
empty message, while the asymptotic slope is inversely related to the bandwidth rate for large messages. A flatter 
curve with smaller intercept indicates better performance. The VIPL/IBA device achieves a latency of less than 17 
microseconds, compared with 152 microseconds TCP/IP over 100BaseT Ethernet. The VIPL/IBA device also 
achieves better performance for large messages, achieving over 135 MB/s compared with 9.5 MB/s for Ethernet.4  
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Figure 1 : Comparative performance of point-to-point messaging over Ethernet and InfiniBand Architecture 
interconnects. Ethernet performance was measured using TCP/IP as the connection transport through a 
dedicated 100BaseT switch. InfiniBand* Architecture performance was measured using VIPL as the 
connection transport through a dedicated InfiniBand Architecture switch. The y-intercept is the zero message 
size latency. Lower is better. The slope (when plotted linearly) is the inverse bandwidth. Flatter is better. 

Scaling Results 

This point-to-point message performance is expected to translate into improved parallel application speedup in LS-
DYNA*, so we next measured the completion times of a small workload. We intentionally chose a small problem to 
illustrate the impact of interconnect performance on speedup. The rp_lsd93 model represents the impact of a small 
car with a rigid pole, but it has only 5,400 elements. For this test, we again measured the performance of TCP/IP 
over 100BaseT and VIPL over IBA. The performance results are illustrated in Figure 2, where we see that 100BaseT 
Ethernet achieves speedup on two and four processors. For more processors, the elapsed time actually begins to 
increase, as the inter-node communication time begins to dominate the computation. The much faster messaging 
performance of IBA, however, shows continued performance improvements up to 14 processors, which is perhaps 
surprising, given the small size of the workload. To achieve these results, we used the default domain decomposition 

                                                           
4 An InfiniBand 1X link operates at a line speed of 2.5 Gbits/second in each direction. Consequently, throughput of 
as much as 300 MB/second is possible. The result of 135 MB/sec was achieved with first generation hardware from 
Intel’s InfiniBand Product Development Kit. Future hardware is expected to deliver significant improvements in 
bandwidth. Achieving the full line speed is not possible, due in part to MPI’s two-sided communication protocol, 
which requires at least one extra message or one buffer copy to deliver a message. The InfiniBand specification also 
defines 4X and 12 X connections, which provide four and twelve times the bandwidth of a 1 X, link, respectively. 
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settings, but supplied the “pfile” option to specify a local directory on each node for scratch space. Writing scratch 
files to a shared file system normally decreases parallel performance, particularly for the large cluster 
configurations. 
 

MPP-DYNA Parallel Performance
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Figure 2 : Comparative speedups of the WPI rp_lsd93 small car crash test case over Ethernet* and 
InfiniBand* Architecture interconnects. The network configuration was the same as used in the point-to-
point measurements in Figure 1. The bars represent relative elapsed time to complete 17,500 cycles. The 
Ethernet-connected cluster peaks in performance at 4 CPUs (two nodes); beyond 4 CPUs, the calculation 
runs more slowly. The InfiniBand Architecture-connected cluster maintains speedup through 14 CPUs, due 
to the lower latency and higher bandwidth of the interconnect. 

 
These performance results show that InfiniBand Architecture is a viable interconnect technology for high 
performance computing applications such as MPP-DYNA*. 

SUMMARY 
 
Using Intel® software tools, we have analyzed and optimized the performance of LS-DYNA on Intel® Pentium ® 4 
and Xeon ™ processor-based systems. These performance improvements have been incorporated into LS-DYNA 
960 build 1145.  
 
We have measured the impact of an InfiniBand Architecture interconnect on the scaling behavior of MPP-DYNA. 
The low latency and high bandwidth of the interconnect allow even small problems to achieve speedups to 14 CPUs, 
while 100BaseT Ethernet peaks at 4 CPUs. 
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Workloads 

The following table summarizes the data sets and parameters used in the performance analyses described in this 
paper.  

Table 6: Workload Descriptions 

Name Element 
Count 

ncycles Source Description 

Small Car A 430000 Complete Customer 
data 

A small car striking a rigid 
barrier, simulation time .010 sec. 

Caravan 329300 5000 NCAC Dodge* Caravan*, detailed model 
Small Car B 530000 Complete Customer 

data 
A small car striking a rigid 
barrier, simulation time .030 sec. 

Bogie20 1800 80000 NCAC FOIL* Bogie, 20 MPH 
Pendulum 2100 Complete NCAC FOIL* pendulum 
PCB 23300 60000 NCAC Portable Concrete Barrier 
rp_lsd93 5400 Complete5 WPI Small car rigid pole impact 
 
NCAC:  National Crash Analysis Center at George Washington University, 
http://www.ncac.gwu.edu/archives/model/  
 
WPI: Worcester Polytechnic Institute, http://www.wpi.edu/Academics/Depts/CEE/Roadsafe/bench.html 

Software Tools 

Intel® VTune™ Performance Analyzer 6.0 
Intel® Fortran Compiler for Linux*, 5.01 and 6.0 
Available at http://www.intel.com/software/products/index.htm 
 

                                                           
5 For the scaling studies, the model was terminated after 17,500 cycles. 
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Pentium® III Processor, Intel® Pentium® III Xeon™ Processor,  Intel® Pentium® 4 Processor, and Intel® 
NetBurst™   are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United 
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