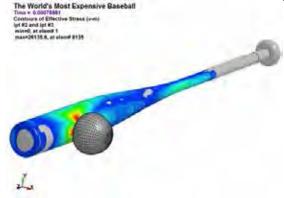

# Volume 5, Issue 01, January 2016

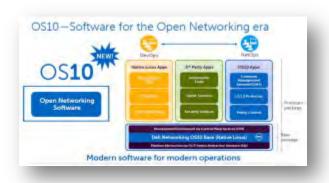







## **ICFD Post treatment with LSPP4.3**




# **Observations on Material Modeling**



# **NASA's CORAL Campaign**



**DELL Raises the Bar** for Open Networking





#### **FEA Information** Inc.

A publishing company founded April 2000 – published monthly since October 2000.

The publication's focus is engineering technical solutions/information.

FEA Information Inc. publishes:

FEA Information Engineering Solutions

FEA Information Engineering Journal

FEA Information China Engineering Solutions

### Livermore Software Technology, Corp. (LSTC) Developer of LS-DYNA One Code Methodology.

LS-DYNA provides fully integrated, strongly coupled, solvers for extensive multiphysics capabilities. Integrated, at no additional cost. Optimized for shared and distributed memory for Unix, Linux, & Windows Based platforms.

#### **FEA Information Engineering Solutions – Dedicated To:**

Finite Element Analysis \* Hardware \* Software \* Cloud \* Consulting \* CAD \* CAE Distribution\* \* Implicit \* Explicit \*Applications \* Press Releases \* Events \* Training

logo courtesy - Lancemore

















logo courtesy - Lancemore



















#### **FEA Information News Sections**

- 02 FEA Information Inc. Profile
- O3 Platinum Participants
- 05 TOC
- 06 Announcements

### Articles - Blogs - News

- 07 DELL Raises the Bar for Open Networking
- 10 LS-DYNA: Observations on Material Modeling
- 16 Kaizenat New Employee Joins Kaizenat
- 17 CAEI February to July 2016 Training Schedule
- 18 BETA CAE Open Meetings 2016
- 20 FEA Information Inc. 2016 LS-DYNA Conference Reception

#### **AEROSPACE NEWS & EVENTS**

NASA's CORAL Campaign Will Raise Reef Studies to a New Level

#### **Automotive & Aerospace Will Return January 2016**

- · Mercedes-Benz launches a further revolution in mobility in Detroit
- Toyota to Commercialize New Telematics System Using SmartDeviceLink Agreement with Ford and Livio

#### **LS-DYNA** Resources

**Participant Training Courses** 

**Participant Solutions** 

**Distribution/Consulting** 

Cloud/On Demand/ Subscription

**Models - THUMS - ADT - Barrier** 

**Social Media** 

#### **Publication Showcase - Olangsheng Zhao**

New Material Models for Carbon Fiber Compression Molding Simulation in LS-DYNA Qiangsheng Zhao (John Zhao – LSTC)

Livermore Software Technology Corporate, Livermore, California, USA



Welcome Dell as a Platinum Participant - www.dell.com

Welcome to 2016 and we hope to continue with technical articles and articles of interest.

With the February issue LSTC will be publishing the Sponsors and Exhibitors to their upcoming June Conference.

If you are interested in participation for the 2016 FEA Information Engineering Solutions please contact Marsha Victory mv@feainformation.com

## Sincerely,

Marsha Victory Trent Eggleston Marnie Azadian Suri Bala Dilip Bhalsod Yanhua Zhao

FEA Information Engineering Solutions US Edition

## **DELL Raises the Bar for Open Networking**

For High resolution graphic <u>www.dell.com</u> Date : 1/20/2016 - Round Rock, Texas



Dell Raises the Bar for Open Networking with New Disaggregated Software to Maximize Customer Choice and Capability

- Operating System 10 (OS10) from Dell Networking establishes a new benchmark for open software modularity and design for large-scale data centers, cloud operators
- Base module leverages unmodified, open-source Linux with platform portability and rich application development environment
- Dell plus third-party applications and programmability available to tailor software for different use cases and operational models

Dell today extended its reach in Open Networking with the announcement of Operating System 10 (OS10) from Dell Networking. This next-generation networking software is designed to introduce new levels of software flexibility and programmability in large-scale data center environments. The OS10 software environment advances the functionality of modern data centers by

disaggregating network software, so customers have more choice in how software is used throughout IT operations.

"Modern. software-defined. data centers require a fresh approach to operations – not just for the network, but across compute and storage elements as well," said Tom Burns, vice president and general manager, Dell Networking and Enterprise Infrastructure. "OS10 gives customers a future-ready springboard to innovate their networks and data center infrastructure more quickly consistently, affording customers greater efficiency and capability at scale."

"OS10 represents an interesting new direction for Dell as it continues to extend and enhance its networking portfolio with innovations in software and hardware," said Brad Casemore, Research Director, Datacenter Networks, IDC. "It's worth noting that Dell also is looking beyond networking as

# **DELL** Raises the Bar for Open Networking

an operational silo or a discrete domain, anticipating fast-evolving requirements for consumption models, IT operations, and the breaking down of traditional IT silos."

### Disaggregating the Network OS Stack

The OS10 platform is designed around new benchmarks for open software modularity so users can create the most efficient and flexible paths across networked systems. OS10 is comprised of a base module and various optional application modules. Now, what had formerly been bundled into tightly-integrated, vendor-specific stacks, has been separated to enhance customer choice, control and programmability.

**OS10 Base Module** – The OS10 Base Module is available for free and runs a unmodified fully-open, Linux distribution. Linux is one of the most widely-used operating systems and can provide a common language across including multiple IT layers networking, storage and compute. The OS10 Base Module can leverage the Linux community-based benefits which can help enhance its programmability, portability, and flexibility for the application layer above it.

Below it, the OS 10 Base Module employs the Open Compute Project Switch Abstraction Interface (SAI) that enables a common,

programmer-friendly language between vendor network operating systems and the particular silicon residing on the physical switch. Today, SAI helps web-scale companies and cloud providers take advantage of the latest silicon innovation by enabling them to program the switches more granularly.

of the base module, OS10 can support traditional networking functions (L2/L3 protocols) from Dell as well as numerous third-party, native Linux, and open source applications such as IP, fabric and security services combined with management and automation tools. This allows customers to tailor IT operations for different use case and operational processes.

# From Network Operations to Development Operations

OS10's unmodified Linux base provides distinct advantages as customers increasingly look to design applications and data centers across server, storage and networking – not just one silo. While OS10 will have appeal for traditional network operators seeking conventional programming means, the software will also appeal to DevOps communities seeking a consistent, common development environment across storage server. networking elements.

## **DELL Raises the Bar for Open Networking**

"The ability for organizations to define their infrastructure-as-code is a foundational and necessary part of any DevOps initiative, enabling practices like collaboration and continuous delivery," said Nigel Kersten, CIO at Puppet Labs. "It provides one common language that can be shared across traditionally siloed organizations - like development, compute, networking and storage - reducing unnecessary complexity, while increasing both speed and availability. We look forward to continuing to work with Dell and the new OS10 offering as more organizations apply DevOps practices to network management."

**Unlocking Customer Innovation -** OS10 highlights the potential for helping customers rapidly develop, customize and ultimately take advantage of a true software-defined data center. Some examples include:

- "OS10 from Dell Networking provides flexibility the unique and programmability necessary for modern cloud provider to innovate and succeed in a fast-changing environment. We're already seeing significant operational benefits from having serverlike manageability combined with our server-centric automation tools." - Jason Long, Director, Network Architecture & Operations, Joyent
- "I believe Dell is onto something special with OS10. It provides a unique development platform to rapidly

prototype customized solutions and help slash time to production. With OS10's openness and programming adaptability, I've been able to install standard mono runtime and the F# language packages and quickly develop a secure IoX application gateway. I can even compile and debug on OS10, and because I have the same software stack, I can do it on my PC to be more productive. I love it!" - Prof. Antonio Cisternino, Vice-Director IT Center, University of Pisa

**Availability** - In March, Dell expects OS10 base module will begin shipping and Dell-developed application modules will enter beta testing for release later in the year.

Links for the article visit <a href="www.dell.com">www.dell.com</a> – this insures DELL updated link changes

- Video: Tom Burns, VP and GM, Dell Networking and Enterprise Infrastructure, discusses OS10
- Blog: Dell Networking Rocks the Data Center Again
- pen Networking wiki, Dell TechCenter
- Follow us at @DellNetworking on Twitter and Dell Enterprise Group on LinkedIn

**About Dell** - Dell Inc. listens to customers and delivers innovative technology and services that give them the power to do more. For more information, visit www.dell.com.



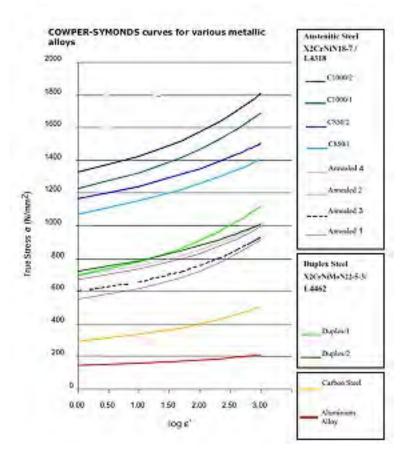
A series of informal articles about one engineer's usage of LS-DYNA to solve a variety of non-crash simulation problems.

By: George Laird, PhD, PE Principal Mechanical Engineer, Predictive Engineering

www.predictiveengineering.com

As a former metallurgist whose specialty was structure-property relationships, I have a keen appreciation for how materials deform under load. At the federal lab where I worked, we had a lot of mechanical test equipment where I could break, crush and impact all sorts of things. This experience grounded me in my appreciation of how difficult it is to simulate the mechanical response of materials using some sort of X-Y plot of stress versus strain.

If one has been reading my prior articles, one knows that I obsess on error management. One client remarked, "Could you put error bars on your stress numbers?" I wish I could, but we do engineering projects that have tight schedules and finite budgets. To really quantify your model's error, or perhaps better said, its deviation from experimental truth, requires one to start first with the material model and then move along through all the other modeling assumptions and slights of hand. One day I'll find my Unicorn client that wants to do this but I'm not holding my breath. In the meantime, for us working engineers, let's talk about simple material modeling that will keep you out of the weeds (since for the difficult stuff I punt and hire a real 'DYNA material expert).


# General Entry-Level Discussion on Material Modeling Everybody's Favorite: HSLA Steel

If you are looking for a primer on how to convert engineering stress v strain into true stress v strain, you have come to the wrong place. That's too simple and enough academicians have already covered it in detail. So let's talk about some of the tricks of the trade that I have learned from reading and my colleagues. A quote that I just love to repeat is "A piece of paper with a stress v strain curve on it is NOT material test data." That is, one starts with real experimental test data in spreadsheet form and not picking points off of a curve with a straight-edge and pencil. Once you have real data, it can be imported into one of the world's handiest material test data processing free software – LS-PrePost (LSPP). With your data in LSPP, you can average it to remove little spikes and then with the reduced data (one saves the averaged data and then reads it back into LSPP), one can take the derivative to find slope changes. Since steel deforms in a smooth continuous manner through dislocation movement, one should find no sharp slope changes in the curve.

If you do – go back and do some more averaging. Once you have a smooth curve, you can then convert it to true stress versus strain. Also keep in mind that LS-DYNA discretizes your curve down to a default 100 points (see Remark 1 in \*DEFINE\_CURVE writeup). For basic steels this is fine but for most rubbers/foams/bone/etc. it is useful to bump this value up to say 500 (see LCINT in \*CONTROL\_SOLUTION) since the curve goes from compression to tension and is highly nonlinear. What this means is that when you are smoothing your material data, there is

rarely a need to have a 'DYNA material curve with more than 500 XY pairs.

For metallic materials, a better way is to use an equation and avoid this whole messy point-to-point interpolation. A good choice is the \*MAT\_SIMPLIFIED\_JOHNSON\_COOK (\*MAT\_098) for numerical efficiency and, an even better reason, that Varmint Al has compiled a list of 1,044 metallic materials such as aluminum, copper, magnesium, steel, stainless steel, etc. all ready to drop into your 'DYNA model.



#### What about Strain Rate for Steels?

Most 'DYNA simulations are dynamic, meaning that the yield stress will scale (i.e., increase) with the strain rate (see Figure 1). This, of course, is a generality and unless you have published or experimental data, it is a bit of guess work. It is not something to run from; just realize that if you have a high-strain rate event, you might want to play around with strain rate effects.

Figure 1: Strain rate effect in steel and aluminum

#### Material Failure Modeling: GISSMO et al.

I would be remiss not to say a few words about Generalized Incremental Stress-State dependent damage Model or GISSMO (I know – it doesn't exactly match up) that is setup under the \*MAT\_ADD\_EROSION card. Let me say that if you think you need to use GISSMO it might be a good time to hire a 'DYNA material modeling expert and that is not me.

My observation on GISSMO is that it allows one to account for triaxial stress effects and facilitates a more accurate prediction of material failure. My more basic approach is to differentiate between tensile and compressive failure modes. This can be done by using EFFEPS to define compressive failure strain and MXEPS to define tensile failure. I like to use a ratio of 3-to-1 between EFFEPS and MXEPS. Why? Lots of reasons due to compressive failure in metals, but as a mechanician I like to explain the use of this 3-1 ratio based on the stress concentration factors for a hole in an infinite plate.

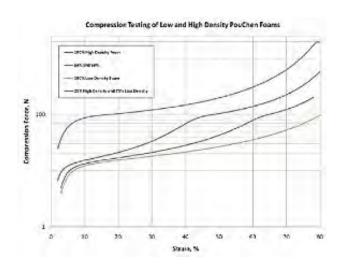
Under compressive load, a tensile stress of +1 exists at the 0 degrees (aligned with the load) and a

compressive stress of -3 at 90 degrees and of course, vice-a-versa for a tensile load. Thus, under compressive load, all defects and voids in the material will have tensile stresses equivalent to yield at 3x compressive loads – to a general back-of-the-envelope degree.

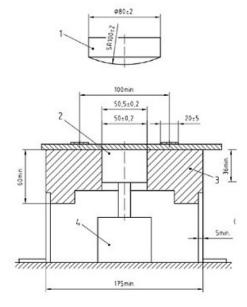
One can also desensitize the failure behavior by requiring all integration points in the element to fail prior to element deletion (NUMFIP) and so on and so forth. The number of options is truly amazing and scary. Before getting lost in the bark and not seeing the forest, accurately predicting material failure can be crazy

complex and it requires companion studies on mesh sensitivity, element choice (plate v solid), element formulation, hourglass, contact formulation, mass scaling (come on – everybody uses a bit of mass scaling) and I'm sure more stuff.

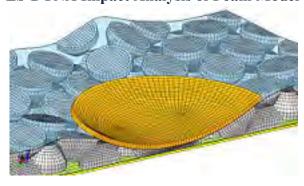
My approach is to keep it simple going out of the gate and just use EFFEPS and MXEPS. For our simulations over the last decade, it has served us well with accurate predictions but since all models are wrong, your experience may be different from ours.


# The Softer Side of Material Modeling: Plastics / Elastomers / Foams

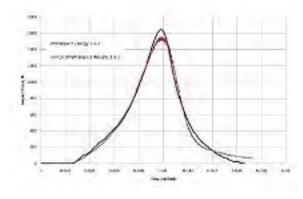
Let's get it the table. out on \*MAT\_PIECEWISE\_LINEAR\_PLASTICITY (\*MAT\_24) does a really nice job in capturing the deformation response of engineering plastics. One just has to be careful with how you define the stress v strain (understatement). As for elastomers (rubbers) and foams. Ι have relied upon \*MAT SIMPLIFIED RUBBER/FOAM (\*MAT\_181) and \*MAT FU CHANG FOAM (\*MAT 83), respectively. What I like about \*MAT\_181 and likewise with \*MAT 83) is that one can enter experimental force versus elongation data directly into the material card and be done with it.


In Figure 2, on the next page, I show some test data and its comparison to experimental results. There is a funny story behind this project. For several long days I labored to get correlation between the model and the test. The test's peak impact force was far higher than my model. After suffering enough, I called my material expert and expressed my plight.

He asked how the experimental data was being processed and I said that they were averaging the data over several impacts. There was a long pause and then the obvious was spoken. If the impact is sufficiently severe, the foam walls will break down and the foam crushes into a dense brick of plastic. Hence, the peak force would, of course, steadily increase after each impact. I went back and used only the data from the first impact event and the model correlated to engineering perfection (i.e., 5%).

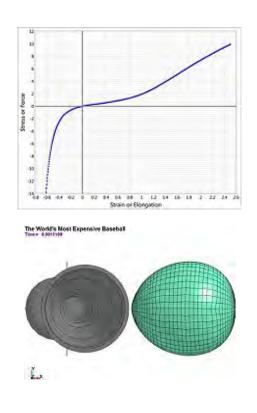

#### **Experimental Foam Data**

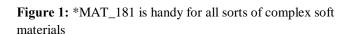


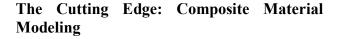

**EN-1621-2 Impact Test** 



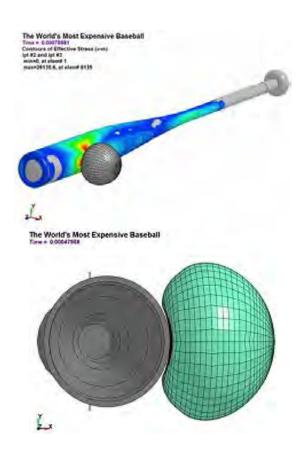
**LS-DYNA Impact Analysis of Foam Model** 





**Comparison of Impact Test Data with FEA** 




Before leaving material modeling of soft stuff, I want to show (on the following page) a really sweet \*MAT\_181 curve for an elastomer. Such a curve was used for modeling a baseball. It was a nice little project where the cost to model the bat was a few thousand but the cost to calibrate the material model to match a


"baseball" was in the tens of thousands. Why so much? The bat was simple aluminum but the complex response of a baseball under large deformation was a whole other ball game. Figure 3, on the next page, shows the material curve and a few freeze-frames of the ball's response.







We tend to advocate getting good with one material model and then sticking with it unless some dire emergency requires something different. Under this banner, \*MAT\_ENHANCED\_COMPOSITE\_DAMAG E (\*MAT\_54) is hard to beat. As for damage prediction in composites, it is a very complex subject and a prior blog covers some of the challenges around composite modeling. On our



work, we just stick to using fiber failure strains and avoid touching the concept of interlaminar failure and fiber debonding. There are a couple of reasons for this basic approach: (i) Our work uses plate elements and (ii) in failure, once the outer fibers start to pop, the only thing that holds the composite structure together is a bit of weak epoxy or for sandwich materials, the foam core. If one is interested in damage tolerance over multiple cycles, it is a bit of a quasi-research project.

### My Cookbook Recipe for Material Modeling

Enough with generalities. Here's the cookbook recipe for when I have to create my own material curve from experimental data. I start with a LS-DYNA model of the test setup and input my true stress v strain or force v elongation curve. Often times I'll run the analysis in both implicit and explicit, just be sure everything is working as advertised. To verify your material model, take the force versus elongation output and overlay it on your original spreadsheet data. Of course, this may seem a bit odd at first but remember that experimental stress v strain data is engineering stress v strain data and that the cross-sectional area is constant and that one starts with a known sample length. Thus, your 'DYNA results of force versus elongation should overlay perfectly your experimental data.

# If You Would Like to Get Better at Material Modeling

I would suggest three things: (i) Read with a critical eye and check out the authors background whether they are engineers solving problems or academicians generating CV bullets; (ii) Get experimental test data and do your own material model generation and (iii) Attend FEA material modeling classes given by industry experts.

#### **Running for the Door**

For now, I have exhausted my current list of bloggable items of interest from implicit analysis, composite modeling, explicit meshing and now general material modeling. I know that other topics surely await but for now, this is what I've got. I hope you have enjoyed my blog and maybe in six months or so something else will come up.

# Kaizenat - New Employee Joins Kaizenat



Mr. Pankaj Kumar is taking on the Regional Manager for West and North India position. He will be overseeing the business development in these regions.

Kaizenat is pleased to welcome one of its newest team members. Mr. Pankaj Kumar is taking on the Regional Manager for West and North India position. He will be overseeing the business development in these regions.

He is a seasoned professional with having 14 years of rich experience in business development and sales for the CAD/CAE industry serving from technical support to regional sales manager.

Helping the engineering industry further reduce time-to-market, increase productivity and profitability. Mr. Kumar's strengths include the ability to understand customers key business issues, provide business initiatives and solutions to meet and exceed customers' expectations.

Additionally he is strong in business management, managing customers relationships, and experienced dealing with customers special solution needs.

Among the industries he will be covering are: automotive, manufacturing, military & defense, machinery & equipment, consumer products etc...

## CAEI – February to July 2016 Training Schedule

https://caeai.com/ansys-training/classes

### February to May

Finite Element Analysis
 Fundamentals

Feb 11, 2016 1 Day \$600

 ANSYS SpaceClaim Direct Modeler for FEA

Feb 18, 2016 1 Day \$600

 Introduction to ANSYS Mechanical (Workbench)

Feb 22, 2016 3 Days \$1800

 ANSYS Mechanical (Workbench) -Structural Nonlinearities

Feb 25, 2016 1 Day \$600

 ANSYS Mechanical (Workbench) -Dynamics

Mar 17, 2016 2 Days \$1200

 Explicit Dynamics with ANSYS/LS-DYNA (Traditional GUI)

Mar 28. 2016 2 Days \$1200

 ANSYS Mechanical (Workbench) -Heat Transfer

Mar 30, 2016 2 Days \$1200

ANSYS SpaceClaim Direct Modeler for CFD

Apr 1, 2016 1 Day \$600

 Advanced Meshing in ANSYS Mechanical (Workbench)

Apr 4, 2016 2 Days \$1200

 Introduction to ANSYS Workbench/ LS- DYNA

Apr 6, 2016 3 Days \$1800

FEA Best Practices

Apr 21, 2016 2 Days \$1200

 Introduction to ANSYS nCode DesignLife

May 2, 2016 1 Day \$600

 Introduction to ANSYS Mechanical APDL

Part I (Traditional GUI)

May 9, 2016 3 Days \$1800

 Introduction to ANSYS Mechanical APDL

Part II (Traditional GUI)

May 12, 2016 2 Days \$1200

ANSYS DesignModeler for CFD

May 16, 2016 1 Day \$600

 ANSYS Workbench Meshing for CFD

May 17, 2016 1 Day \$600

Introduction to CFX

May 18, 2016 2 Days \$1200

Introduction to ANSYS FLUENT

May 23, 2016 2 Days \$1200

## **BETA CAE Open Meetings 2016**

www.beta-cae.com/ourevents.htm

# **BETA CAE Open Meeting**

#### France

February 4, 2016 SAFRAN Etablissement de Paris-Saclay Chateaufort, France hosted by SAFRAN Engineering Services

# **BETA CAE Open Meeting**

#### & Seminars

## Bangalore, India

February 17 & 18, 2016 SheratonGrand Hotel at Brigade Gateway Bangalore, India hosted by Xitadel CAE Technologies India

# BETA CAE Open Meeting

### in Brazil

March 17, 2016 hosted by Grupo SMARTtech

# **BETA CAE Nordic Open Meeting Gothenburg, Sweden**

April 5, 2016 Lindholmen Conference Center & Science Park Gothenburg, Sweden hosted by BETA CAE Nordic

# **BETA CAE Open Meeting Korea**

May 10, 2016 InterContinental Seoul COEX Seoul, S. Korea hosted by Hankook AAC

# **BETA CAE** Open Meeting

#### **Turkey**

June 3, 2016 Byotell - Istanbul, Turkey hosted by A-Z Tech

# **BETA CAE Open Meeting Italy**

June 28, 2016 NH Torino Lingotto Tech Torino, Italy hosted by BETA CAE Italy

# **BETA CAE Open Meeting**

#### **North America**

October 11, 2016 The Inn at St. John's Plymouth, MI, USA hosted by BETA CAE Systems USA

# BETA CAE Open Meeting Japan

November 8, 2016 Nagoya, Japan hosted by TOP CAE Corp.

# BETA CAE Open Meeting Beijing, China

November 22, 2016 Beijing, China hosted by Beijing E&G Software

# BETA CAE Open Meeting Shanghai, China

November 25, 2016 Shanghai, China hosted by Shanghai Turing Info. Tech.

## FEA Information Inc. 2016 LS-DYNA Conference Reception

# $14^{\mathrm{TH}}$ International LS-DYNA Users Conference - Welcome Reception Sunday, June 12, 2016

FEA Information Inc., D3View and the following FEA Information Participating LS-DYNA distributors will be hosting the Welcome Reception at the 14th International LS-DYNA Conference.

During the reception each participant will be announced giving you the opportunity to meet and know the FEA Information LS-DYNA's global representatives. We will be adding additional co-sponsors to our list each month.

### Please join us in 2016

#### From China:

- Shanghai Hengstar Technology Co., Ltd.
- Dalian Fukun
- ARUP China

#### From Korea:

- THEME
- KOrea Simulation TECHnology Co.,Ltd

#### From Sweden:

DYNAmore Nordic AB

#### From Germany:

- DynaMORE GmbH
- · CADFEM GmbH

#### From India:

- · Kaizenat Technologies Pvt. Ltd.
- · Arup India Pvt Ltd

#### From the US

- Dynamax
- · LSTC

#### From the UK

· ARUP UK

#### **From France**

· DynaS+

# 14th International LS-DYNA Users Conference Update Information

FEA Information Editors – Marnie Azadian

Keynote speaker Paul DuBois who will be presenting a joint presentation at the conference:

A new versatile tool for simulation of failure in LS-DYNA and the application to aluminum extrusions

- · Paul Du Bois, Consulting engineer
- Dr. Tobias Erhart, Dr. Filipe Andrade, Dr. Andre Haufe, Dynamore GmbH
- · Drs. Frieder Neukamm, Dr.Markus Feucht, Daimler AG

### **Presentation Contents**

- Aluminium extrusions
- · Material modeling of Aluminium extrusions
- · Concept of a generalized failure model
- · Example of anisotropic damage
- · Example of volumetric/deviatoric damage
- Plane stress anisotropic failure: directional dependency upon the state of stress
- · Failure model for aluminum extrusion
- · Example of a bumper component
- Conclusions

## 14<sup>th</sup> International LS-DYNA Users Conference



Welcome The conference will host a forum for engineers, professors, students, consultants, industry leaders, and interested parties to exchange their ideas, and listen to the latest in industry and academic presentations..

The presenter (1) of the accepted paper will receive a complimentary (no fee) registration, when they register using the "LSTC Conference Registration," at the Royal Dearborn Hotel.

Corporate Participation: Platinum, Gold, Silver, Bronze

#### **Conference Dates**

Sunday, June 12, 2016:

Registration Exhibition Area, Reception

Monday, June 13, 2016:

Registration Exhibition Area Banquet

**Tuesday, June 14, 2016:** 

Registration Exhibition Area Closing

Wednesday & Thursday, June 15 & 16, 2016:

Training Classes

#### **Contact Information**

**Abstracts & papers:** 

papers@lstc.com

Participation, Registration:

Marsha Victory vic@lstc.com

#### **Paper Submission**

Deadline: March 05, 2016Length: 3,000 word maximum

• Format: 8½" x 11" paper, single-spaced

MS Word template provided

# 14<sup>th</sup> International LS-DYNA Users Conference

# Conference Schedule & Training

### Sunday, June 12, 2016:

- · Registration for early arrivals,
- Training opportunities during day
- Exhibitors open in evening,
- · Reception

### **Tuesday, June 14, 2016.**

- · Registration,
- Conference
- Closing session about 3pm

### Monday, June 13:

- · Registration,
- · Conference,
- Banquet

# Wednesday, June 15 Thursday, June 16

1& 2-day Training at U-M Dearborn

# Conference Sponsorship and Booth Information

For information on Sponsorships and Booths please contact Marsha vic@lstc.com

Previous Sponsors and Exhibitors: If you would like the same booth that you hosted, at the last conference, please let me know so I can quickly reserve your booth placement.

# **AUTOMOTIVE NEWS & EVENTS**

## Dilip Bhalsod

The purpose of this section is to provide a place, for our automotive readers, to share news and events relative to their company and/or products.

The criteria for submitting information is as follows:

- It has to be public information
- · Published on the Internet
- Be automotive informational, or human interest.
- We do not accept financial quarterly information

We would welcome the opportunity to share information about your company with our readership.

You may send Title to your information and the accompanying URL to <a href="mailto:agiac99@aol.com">agiac99@aol.com</a> - Subject Line please use "Automotive News"

Submissions should be received by the 15<sup>th</sup> of each month, of the month you want your article placed

Submission publications is at the sole discretion of FEA Information Inc.

The following are copyright© to their respective companies.

# Mercedes-Benz launches a further revolution in mobility in Detroit



1886 to 2016: from the Benz Patent Motor Car to the semiautonomous new E-Class: 130 years of the automobile: Mercedes-Benz launches a further revolution in mobility in Detroit

World Premiere of the new Mercedes-Benz E-Class: Mercedes-Benz New Year's Reception 2016 in Detroit.

The inventor of the automobile is presenting the most advanced production vehicle in the world, the new E-Class, at the Detroit motor show. It sets new standards for safety, efficiency and automobile intelligence.

On 29 January 1886 Carl Benz applied to the Imperial Patent Office in Berlin for the most significant patent of the industrial age: a "motorised vehicle powered by a gas engine" - the initial idea behind all further automobile designs in the century that followed. 130 years later, on 11 January 2016, Mercedes-Benz is in "Motown" Detroit to show the new E-Class, the car with the technological capability to revolutionise mobility all over again.

As the inventor of the automobile, Mercedes-Benz continues to press forward with the development of mobility in all areas. The company's expertise at both a technical and a conceptual level is underscored by more than 90,000 registered patents, together with a long list of innovations that were first introduced to the market in models from Mercedes – these range from engines to safety, comfort and design features. The absolute state of the art of

automotive development in all these areas is reflected by the new E-Class.

Just two examples: the innovative plug-in hybrid drive system, coupled with lightweight construction techniques and aerodynamic performance, sets new standards for efficiency. The similarly new multichamber air suspension is an option that outstanding ride ensures comfort. tremendous scope of the E-Class's innovative features, which include among them the Active Lane-change Assistant that steers the saloon as if by magic into the lane selected by the driver, makes it the most intelligent saloon in the business class.

It is this intelligence that also makes the new E-Class a milestone on the way to the self-driving automobile - for Mercedes-Benz and for the automotive industry as a whole. The latest evidence of this special status was provided just a few days ago, when the authorities in the US state of Nevada gave their approval to allow the testing of autonomous driving with the new E-Class – not with a prototype but with a

## Mercedes-Benz launches a further revolution in mobility in Detroit

production vehicle. Mercedes-Benz was the first motor manufacturer in the world to receive the relevant licence during this year's International Consumer Electronics Show (CES).

The processing power of the car's high-tech electrical/electronic systems and its IT infrastructure, together with its sensors, allow a level of mobile autonomy hitherto unmatched in series production: the driver only needs to steer – assuming they wish to do so - on a temporary basis. The traffic lane and speed are regulated, while the vehicle reacts to speed limits and to the traffic around it.

# The E-Class as the next stage of automotive evolution

The new Mercedes-Benz E-Class thus marks the beginning of a new phase in automotive development: "For Mercedes, as the inventor of the automobile, it was always clear that the next great revolution in mobility would be the self-driving car", notes Dr Dieter Zetsche, Chairman of the Board of Management of Daimler AG and Head of Mercedes-Benz Cars. At the Consumer Electronics Show 2015 in Las Vegas, which saw the world premiere of the fully autonomous Mercedes-Benz F 015 Luxury in Motion research vehicle, Dr Zetsche was already talking about this role for the

automobile of the future: "People have been dreaming of self-driving cars since the 1950s. We at Mercedes were the ones who once turned the vision of mobility without a horse into reality. Now it's time for us to offer the possibility of managing without a driver as well."

#### Building the technological bridge to freedom

As the Head of Group Research at Daimler, Anke Kleinschmit sees this technological avant-garde as part of a cultural tradition: "At the time of its invention, the groundbreaking innovation of the automobile brought about what could perhaps be described as a space warp. Suddenly distances contracted and people came closer together. Fast, individual transport provided a technological bridge between two worlds that until then had lain so very far apart."

This bridge was to prove extremely successful: since its invention, the automobile has developed into one of the world's most important economic factors, with more than 50 million people working in countless companies carrying forward the legacy of Carl Benz and Gottlieb Daimler. The desire for individual transport is still a strong selling point today, when so many people rely on the car for personal freedom.

## Mercedes-Benz launches a further revolution in mobility in Detroit

#### **Self-driving vehicles in the 21st century**

But while in the 20th century this freedom was above all the freedom to travel and get around, today's cars allow a different sort of freedom. As Dr Zetsche describes it: "Cars have become mobile homes, in the truest sense of the words. Protected spaces, as it were, where people can pursue their dreams and fulfil their individual needs." Daimler's Board Chairman sees the autonomous vehicle as holding a key role in this respect: "This technology will give every occupant of a vehicle completely new opportunities to make use of valuable time."

With the new E-Class now going into production, Mercedes-Benz is able to look back on a thirty-year tradition of technology for self-driving cars. Although the first experimental vehicles with autonomous mobility functionality formed part of the Prometheus project as far back as the late 1980s, the pace of development has been stepped up in recent years: in August 2013, the so-called "Bertha Benz Drive" saw an autonomous S-Class follow the historic route of the first journey ever in an automobile.

Two years later Mercedes-Benz presented the F 015 Luxury in Motion, a design study for the car of the future, in Las Vegas. And just a few months after that, the Governor of Nevada issued the first official licence plate for an autonomously driving truck: the Inspiration Truck of Daimler subsidiary Freightliner has been operating its freight routes ever since as

the first goods vehicle with autonomous technology on board.

#### The automobile of the future

The new E-Class now transfers this technology to a standard-production passenger car, so securing mobile autonomy as an established part of everyday life. This model series enjoys particular popularity as a business saloon and, over the decades since it was first introduced, has built up its standing as the mainstay of the company. For Professor Dr Thomas Weber, Member of the Board of Management of Daimler AG, responsible for Group Research and Mercedes-Benz Cars Development, this makes the new E-Class the right model to take up this trend: "We are taking a further major step on the way to autonomous and networked driving. The innovations found in the new E-Class define a new benchmark in terms of safety, stress relief, comfort and networked living, so allowing Mercedes-Benz once again to underline its leadership position."

In this, the 130th year since Carl Benz invented the motor car, there is one thing about which Dr Dieter Zetsche is certain: "The best is still to come for the car sporting the three-pointed star. The Mercedes of the future will drive not only with zero emissions, but autonomously, too. It will be even safer, even more luxurious and fully networked as well. A comfortable retreat for the journey between office and home – a place to work, communicate, relax and enjoy."

# Toyota to Commercialize New Telematics System Using SmartDeviceLink Agreement with Ford and Livio

Toyota to Commercialize New Telematics System Using SmartDeviceLink Agreement with Ford and Livio To Establish Industry Development and Operation Framework to Deploy SDL January 04, 2016 Las Vegas, Jan. 4, 2016 Toyota Motor Corporation has entered into an agreement with Ford and Livio to establish an industry development and operation framework to deploy Livio's SmartDeviceLink (SDL). Other automakers and app developers are welcome to join this collaboration. Toyota will also commercialize a telematics system using SDL.

SDL is an open source platform for smartphone apps and car connectivity where customers can use apps in their vehicle through voice recognition function and operation panel.

Shigeki Terashi, Executive Vice President of Toyota Motor Corporation, said: "Developing a safer and more secure in-car smartphone connectivity service which better matches individual vehicle features is exactly the value and advantage an automaker can offer customers. We expect that many companies share our view and will participate in the industry SDL collaboration."

In August 2011, Toyota and Ford entered a collaboration agreement for next generation incar telematics system standardization. In June 2015, Toyota entered into an agreement with Ford and Livio to explore SDL introduction to its vehicles\*1. Toyota's investigation and consideration of SDL has been completed successfully, and the company found SDL suitable for its in-car app connectivity.

With SDL, automakers can offer smartphone apps which match each company's in-car system characteristics and interface. This

enables customers to use apps they want more safely and comfortably.

At the same time, if more automakers apply SDL, app developers can develop apps which are compatible with multiple automakers' telematics systems at one time, meaning more apps available to customers in a shorter development time.

At 2016 CES, Toyota demonstarted an SDL integration in the Livio exhibit, LVCC – North from January 6th through the 9th. On Wednesday, January 6, 11:30 a.m. – 1 p.m., Ken-ichi Murata, General Manager of Toyota BR Connected Strategy and Planning, appaeared at the SDL Summit. Murata and officials from Ford, Livio and others will deliver remarks followed by a Q+A session.

http://newsroom.toyota.co.jp/en/detail/8099666

Media Contacts
Elizabeth Winter ewinter@golin.com
Rebecca Lee rlee@golin.com

John Hanson john\_hanson@toyota.com Cindy Knight cindy\_knight@toyota.com

# **AEROSPACE NEWS & EVENTS**

### Marnie Azadian

The purpose of this section is to provide a place, for our automotive readers, to share news and events relative to their company and/or products.

The criteria for submitting information is as follows:

- It has to be public information
- An internet URL
- Be technical, informational, or human interest.
- We do not accept financial quarterly information

We would welcome the opportunity to share information about your company with our readership.

You may send Title to your information and the accompanying URL to Marnie Azadian at <a href="mailto:agiac99@aol.com">agiac99@aol.com</a> - Subject Line please use "Aerospace News"

Submissions should be received by the 15<sup>th</sup> of each month, of the month you want your article placed. For example: We would need the title of the news or event by December 15<sup>th</sup>, 2015 to be featured in the December 2015 FEA newsletter.

Submission publications is at the sole discretion of FEA Information Inc.

The following are copyrighto to their respective companies.

# NASA's CORAL Campaign Will Raise Reef Studies to a New Level

Jan. 6, 2016 16-003



A new three-year NASA field expedition gets underway this year that will use advanced instruments on airplanes and in the water to survey more of the world's coral reefs in far greater detail than has ever been assessed before. The COral Reef Airborne Laboratory (CORAL) will measure the condition of these threatened ecosystems and create a unique database of uniform scale and quality.

Coral reefs, sometimes called the rainforests of the sea, are home to a quarter of all ocean fish species. They protect shorelines from storms and provide food for millions of people, yet very little of the world's reef area has been studied scientifically. Virtually all measurements have been made by expensive, labor-intensive diving expeditions. Many reefs never have been surveyed, and those reefs that have been studied were measured only at a few dive sites.

"Right now, the state of the art for collecting coral reef data is scuba diving with a tape measure," said Eric Hochberg, CORAL principal investigator and scientist at the Bermuda Institute of Ocean Sciences, St. George's. "It's analogous to looking at a few trees and then trying to say what the forest is doing."

Hochberg's team will survey the condition of entire reef systems in Florida, Hawaii, Palau, the Mariana Islands and Australia. CORAL will use an airborne instrument called the Portable Remote Imaging Spectrometer (PRISM), developed and managed at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. Concurrent in-water measurements will validate the airborne measurements of reef condition. In turn, reef condition will be analyzed in the context of the prevailing environment, including physical, chemical, and human factors. The results will reveal how the environment shapes reef ecosystems.

Reefs worldwide are threatened by human impacts and climate change. The limited observations made to date suggest that 33 to 50 percent of our planet's coral reefs have been significantly degraded or lost, and the concern among reef scientists is that most functioning reef ecosystems will disappear by mid-century.

## NASA's CORAL Campaign Will Raise Reef Studies to a New Level

"We know reefs are in trouble," Hochberg said.
"We've seen the reefs of Jamaica and Florida
deteriorate and we think we know what is
happening there. However, reefs respond in
complex ways to environmental stresses such
as sea level change, rising ocean temperatures
and pollution. The available data were not
collected at the appropriate spatial scale and
density to allow us to develop an overarching,
quantitative model that describes why and how
reefs change in response to environmental
changes. We need accurate data across many
whole reef ecosystems to do that."

According to Michelle Gierach, a CORAL project scientist at JPL, PRISM was specifically created for remote sensing of coastal and inland waters. PRISM records the spectra of light reflected upward toward the instrument from the ocean below, allowing researchers to pick out the unique spectral signatures of living corals and algae. As corals die, algae increase on a reef, so the ratio of coral to algae is an indicator of the ecosystem's health.

"Now, estimates of global reef status are synthesized from local surveys with disparate aims, methods and quality," Gierach said. "With CORAL, we will provide not only the most extensive picture to date of the condition of a large portion of the world's coral reefs, but a uniform dataset, as well."

JPL is providing engineering support and management for CORAL's airborne campaigns under project manager Ian McCubbin. CORAL science team members come from institutions across the United States, each bringing different subject expertise.

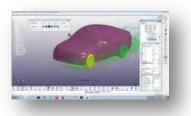
After the 2016-2017 field campaign, the CORAL science team will analyze the new data to catalog the relative abundance of coral, algae and sand on each reef. "Then we'll be able to start making predictions about what might happen to the world's reefs that are based on numbers, rather than just ideas," said Hochberg.

Although CORAL will vastly increase the amount of data available on the health of coral reefs, it will cover just three to four percent of the world's reefs.

"Ideally, in a decade or so we'll have a satellite that can frequently and accurately observe all of the world's reefs, and we can push the science and most importantly our understanding even further," said Hochberg.

## NASA's CORAL Campaign Will Raise Reef Studies to a New Level

NASA funded CORAL through its Earth Venture-Suborbital program, which competitively selects airborne and field investigations that target specific scientific questions, complementing the agency's satellite missions. Earth Venture-Suborbital, as well as spaceborne Earth Venture mission instrument investigations are part of NASA's Earth System Science Pathfinder program managed at the agency's Langley Research Center in Hampton, Virginia. NASA's Earth Venture program supports innovative approaches to address Earth science research with regular and frequent windows of opportunity to accommodate new scientific priorities.


NASA uses the vantage point of space to increase our understanding of our home planet, improve lives, and safeguard our future. NASA develops new ways to observe and study Earth's interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

To find out more about NASA's Earth science research, visit:

http://www.nasa.gov/earth

Steve Cole Headquarters, Washington 202-358-0918 stephen.e.cole@nasa.gov

Alan Buis Jet Propulsion Laboratory, Pasadena, Calif. 818-354-0474 alan.buis@jpl.nasa.gov



## **ICFD Post treatment with LSPP4.3**

## Tutorial video Available for viewing

Published on January 15, 2016 a new Tutorial Video on introducing the new post treatment

tools available in LSPP4.3 for the LS-DYNA ICFD solver.

**FAQs** 

LSTC provide a huge number of FAQs at the ftp site <a href="ftp.lstc.com/outgoing/support/FAQ">ftp.lstc.com/outgoing/support/FAQ</a>

. Many thanks to Jim Day of LSTC for making this information available.

#### Some specific popular FAQs include:

consistent units

ftp://ftp.lstc.com/outgoing/support/FAQ/consistent\_units

An overview of Contact

ftp://ftp.lstc.com/outgoing/support/FAQ/contact.overview

Soft Contact

ftp://ftp.lstc.com/outgoing/support/FAQ/contact.soft1

General guidelines for Crash Analysis

ftp://ftp.lstc.com/outgoing/support/FAQ/guidelines.pdf

Hourglass Control

ftp://ftp.lstc.com/outgoing/support/FAQ/hourglass\_condensed

Dealing with Instabilities

ftp://ftp.lstc.com/outgoing/support/FAQ/instability.tips

Dealing with long run times

ftp://ftp.lstc.com/outgoing/support/FAQ/long\_run\_times

Mass Scaling

ftp://ftp.lstc.com/outgoing/support/FAQ/mass\_scaling

Negative Volume in Brick Elements

ftp://ftp.lstc.com/outgoing/support/FAQ/negative\_volume\_in\_brick\_element.tips

Quasi-static simulations

ftp://ftp.lstc.com/outgoing/support/FAQ/quasistatic

**Restarting Analyses** 

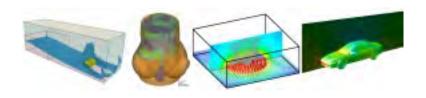
ftp://ftp.lstc.com/outgoing/support/FAQ/restart

Modeling spinning bodies

ftp://ftp.lstc.com/outgoing/support/FAQ/spin

Spring Back

ftp://ftp.lstc.com/outgoing/support/FAQ/springback


Stress vs Strain for plasticity models

ftp://ftp.lstc.com/outgoing/support/FAQ/stress\_vs\_strain\_for\_plasticity\_models

User-defined materials

ftp://ftp.lstc.com/outgoing/support/FAQ/user\_defined\_materials.faqFAQs

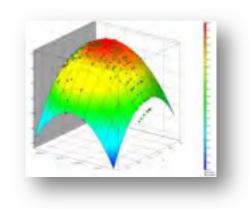
# LS-DYNA Support Site www.dynasupport.com



# **LS-DYNA Support**

At this site you will find answers to basic and advanced questions that might occur while using LS-DYNA, information about new releases and ongoing developments.

## Jan 22, 2016 - Rich document History Variables for Certain Material Models


### 2015 Recent Changes

The Support Website has the direct pdfs for the following October Updates

- History Variables for Certain Material Models
- LS-DYNA Manual R 8.0 Vol III
- · LS-DYNA Manual R 8.0 Vol II
- · LS-DYNA Manual R 8.0 Vol I

## LS-OPT & LS-TaSC

## www.lsoptsupport.com



## LS-OPT

LS-OPT, the graphical optimization tool that interfaces perfectly with LS-DYNA,

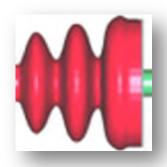
Allows the user to structure the design process, explore the design space and compute optimal designs according to specified constraints and objectives. The program is also highly suited to the solution of system identification problems and stochastic analysis.

The graphical tool LS-OPTui interfaces with LS-DYNA and provides an environment to specify optimization input, monitor and control parallel simulations and post-process

optimization data, as well as viewing multiple designs using LS-PREPOST.

#### **Optimization**

- Size-/Shape optimization
- Constraints, mixed continuous/discrete variables, multiple load cases, etc.
- Multi-Objective optimization (Pareto Frontier)
- Reliability based design optimization


#### LS-TaSC - LS-TaSC 3.1 released

#### **Topology Optimization**

A tool for the topology optimization of nonlinear problems involving dynamic loads and contact conditions. It can be used to find a

concept design for most structures analyzed using LS-DYNA.

### www.dynaexamples.com



## **LS-DYNA Examples**

The site presents approximately 200 LS-DYNA examples from various training classes. The input files and several class notes are available for download.

The download is free of charge, a login is not required. The majority of content has been contributed by LSTC/DYNAmore. The content is prepared for educational purposes. Hence, material properties and other parameters might be non-physic for simplification.

#### Among the files and Sections:

**LS-DYNA Keyword Search** If you are looking for an example containing some specific LS-DYNA keyword you may use the site search in the header section of this page.

**Show Cases** This folder contains several LS-DYNA examples focusing on specific load cases or keywords.

**Metal Forming** The examples in this section are from the introductory class on metal forming from LSTC. You may access the examples separately by the menu on the left. The examples are prepared for LS-DYNA 970 and upwards.

ALE The examples in this section are from the ALE (Arbitrary Lagrangian Eulerian Method) class of M'hamed Souli. M'hamed Souli is

Professor at the University in Lille France. Both authors are key developers for the powerful capabilities of the Eulerian Methods in LS-DYNA. You may access the examples separately by using the menu on the left. The examples run with LS-DYNA 970 and upwards.

Thermal The examples in this section present examples about the thermal capabilities of LS-DYNA. The examples are provided by Dr. Art Shapiro. Art is working since decades on topics reated to DYNA3D, LS-DYNA and TOPAZ. He is the key developer for the thermal capabilites of LS-DYNA. Art is one of the co-founders of LSTC. You may access the examples separately by using the menu on the left.

### LS-DYNA CONFERENCE PUBLICATIONS

www.dynalook.com



### **DYNAlook**

### **DYNAlook**

The site presents papers from European and International LS-DYNA User Conferences and papers provided by other users. 1604 papers are available.

The papers are from LS-DYNA Conferences and are accessible via the search functionality.

2015 will be published soon.

13th International LS-DYNA Conference Detroit, 2014

9th European LS-DYNA Conference Manchester, 2013 12th International LS-DYNA Conference Detroit, 2012

8th European LS-DYNA Conference
Straßburg, 2011 ...

### ATD -DUMMY MODELS

### www.dummymodels.com

**DUMMY Model Support -** Currently, the manuals of models developed by DYNAmore are available.

This site provides detailed information on dummy models for LS-DYNA. In the near future the models developed by LSTC will be added. The LSTC dummy and barrier are models are no fee and included with the LS-DYNA license.

To license the models we kindly ask to contact your local LS-DYNA distributor. Any kind of proposal or enhancements for the models and this site is very welcome.

### Among the Dummy Models on this site you can find:

### **Side Impact Dummies**

Rear Impact Dummies

ES2/ES2re DYNAmore
BioRID-II V3.
DYNAmore

World SID 50%
DYNAmore Child Dummies

US-SID
DYNAmore
DYNAmore
P-3.0
DYNAmore

### LSTC ATD MODELS

### www.lstc.com/models

### **LSTC Models Overview**

Free or low cost FE models are important to LS-DYNA users in various fields. Therefore, LSTC is developing models with the help and support of our customers. Some of the models are joint developments with our partners.

LSTC's Models are available at no cost to licensees of LS-DYNA who are current with their annual license fees (Annual License) or maintenance fees (Paid-up License). Models are fully unencrypted and accessible. LSTC endeavors to make the models as complete, accurate, reliable, and easy to use as possible.

This section of our site was created to keep users informed about our models. It will be

updated periodically to reflect changes to existing models and announce newly released models.

Feedback about the models is welcome and will be used to improve future releases. To submit questions, suggestions, or feedback about LSTC's models, please send an e-mail to: atds@lstc.com.

For news and updates about our dummy models, please join our models news mailing list.

www.lstc.com/products/models/mailinglist

### **Barrier Models**

LSTC offers several Offset Deformable Barrier (ODB) and Movable Deformable Barrier (MDB) models:

- · ODB modeled with shell elements
- ODB modeled with solid elements
- ODB modeled with a combination of shell and solid elements
- MDB according to FMVSS 214 modeled with shell elements
- MDB according to FMVSS 214 modeled with solid elements

- MDB according to ECE R-95 modeled with shell elements
- AE-MDB modeled with shell elements
- IIHS MDB modeled with shell elements
- IIHS MDB modeled with solid elements
- RCAR bumper barrier
- RMDB modeled with shell and solid elements

### AEROSPACE WORKING GROUP

### http://awg.lstc.com/tiki/tiki-index.php

The LS-DYNA® Aerospace Working Group (AWG) is a partnership of federal agencies, corporations, and universities working together to develop and publish aerospace test cases and modeling guidelines for finite element analyses with LS-DYNA®.

The actions of the AWG serve to support the use, development, and reliability of LS-DYNA® for aerospace numerical analyses.

Some participants are partially or fully funded by the Federal Aviation Administration (FAA) in the National Aviation Research Plan 'Aircraft Catastrophic Failure Prevention Research' program, or by the National Aeronautics and Space Administration (NASA), or associated with the participants as LS-DYNA® users.

## **Engine Related Impact Failure (ERIF) - Arizona State University (ASU)**

- Boeing
- Central Connecticut State University (CCSU)
- Federal Aviation Administration (FAA)
- General Electric Aviation
- George Mason University (GMU)
- Honda Aircraft Engine
- Honeywell
- Livermore Software Technology Corporation (LSTC)
- National Aeronautics and Space Administration (NASA)

- Ohio State University (OSU)
- Pratt & Whitney
- Pratt & Whitney Canada
- Rolls-Royce
- University of Akron
- Williams International

### Cabin Interior (CI)

- B/E Aerospace
- Boeing
- Bombardier
- Central Connecticut State University
- Cessna
- Federal Aviation Administration (FAA)
- Humanetics
- National Aeronautics and Space Administration (NASA)
- Wichita State University
- Zodiac Aerospace

Training Training



### **Participant's Training Classes**

Webinars

**Info Days** 

**Class Directory** 

### **Participant Class Directory**

| Arup                  | www.oasys-software.com/dyna/en/training         |
|-----------------------|-------------------------------------------------|
| up                    |                                                 |
| (corporate)           |                                                 |
|                       |                                                 |
| BETA CAE Systems S.A. | www.beta-cae.com/training.htm                   |
|                       |                                                 |
| (corporate)           |                                                 |
| DYZYA                 |                                                 |
| DYNAmore              | www.dynamore.de/en/training/seminars            |
| (corporate)           |                                                 |
| ,                     |                                                 |
| ESI-Group             | https://myesi.esi-group.com/trainings/schedules |
| (                     |                                                 |
| (corporate)           |                                                 |
| ETA                   | www.eta.com/support2/training-calendar          |
|                       |                                                 |
| (corporate)           |                                                 |
| LSTC                  | www.lata.com/training                           |
| LSIC                  | www.lstc.com/training                           |
| (corporate)           |                                                 |
|                       |                                                 |
| LS-DYNA OnLine        | www.LSDYNA-ONLINE.COM                           |
| (Al Tabiei)           |                                                 |
| (                     |                                                 |

**ARUP** Training

### **ARUP** Visit the website for complete listings/changes/locations

www.oasys-software.com/dyna/en/training

To enrol on any of these courses please email Dyna Support at <a href="mailto:dyna.support@arup.com">dyna.support@arup.com</a>.

| Date                 | Training Class                                            |
|----------------------|-----------------------------------------------------------|
|                      |                                                           |
| Scheduled on request | Oasys PRIMER - An Introduction                            |
| Scheduled on request | Oasys PRIMER - Automatic Assembly of Multiple Crash Cases |
| Scheduled on request | Oasys PRIMER - Spotwelds and Connections                  |
| Scheduled on request | Oasys PRIMER - Seat and Dummy Positioning                 |
| Scheduled on request | Oasys PRIMER & D3PLOT - An Introduction to JavaScripting  |

BETA-CAE Training

**BETA CAE** Visit the website for complete listings/changes/locations

www.beta-cae.com/training.htm

Basic and advanced training courses can be scheduled upon request. A variety of standard or tailored training schedules, per product or per discipline, are being offered to meet customers needs.

A number of recommended training courses offered are described below. The list is not exhaustive and more courses can be designed according to your needs.

Please, contact ansa@beta-cae.gr for further details.

Recommended Training Courses (Complete information on website)

- SPDRM
- · ANSA / µETA Basics
- ANSA /  $\mu$ ETA for CFD
- ANSA / µETA for Crash & Safety simulation
- ANSA / µETA for Durability simulation

- · ANSA / µETA for NVH analyses
- Multi-Body Dynamics
- Laminated Composites
- Morphing and Optimization
- Automation
- Additional special sessions

**DYNAMORE** Training

**DYNAmore** 

Visit the website for complete listings / changes /

locations

www.dynamore.de/seminars

### New seminar brochure for 2016 published by DYNAmore

Download (pdf): <a href="https://www.dynamore.de/seminars-2016">www.dynamore.de/seminars-2016</a>

We are pleased to offer you our new seminar brochure for 2016. Once again, we have adapted our extensive range of seminars and free-of-charge information events to current developments as well as the needs of our customers.

With the newly founded DYNAmore subsidiary DYNAmore France SAS, selected seminars are now also offered in the new office in Versailles.

Selection of trainings and free-of-charge information & support days in the first quarter of 2016

Joining Techniques for Crash Analysis 10-11 Feb. (L) / 1-2 March

Introduction to LS-PrePost 15 Feb. / 14 March

Introduction to LS-DYNA 16-18 Feb. / 15-17 March Parameter Identification with LS-OPT 19 Feb. / 8 March (L)

User Interfaces in LS-DYNA 29 Feb.
Implicit Analysis with LS-DYNA 3-4 March
Introduction to Passive Safety Simulation 10-11 March

Damage and Failure Modeling 15-16 March (T) / 15-16 March (G)

CPM for Airbag Modeling 18 March

ALE and Fluid-Structure Interaction 21-22 March (V)

Information day: Possibilities with LS-DYNA/Implicit 23 Feb.

Information day: ANSA, LS-OPT and META 29 Feb.
Information day: Welding and Heat Treatment 7 March

Information day: PRIMER (Preprocessor for LS-DYNA) 8 March

Support day: LS-DYNA 15 Jan. / 19 Feb. Support day: Occupant Safety 18 March

If not otherwise stated, the event location is Stuttgart, Germany. Other event locations are:

 $L = Link \ddot{o}ping$ , Sweden;  $G = G\ddot{o}teborg$ , Sweden; T = Turin, Italy; V = Versailles, France

Overview and registration: www.dynamore.de/seminars

If the offered seminars do not fully suit your needs, we are pleased to meet your individual requirements by arranging tailored on-site training courses on your company premises.

ESI-GROUP Training

### https://myesi.esi-group.com/trainings/schedules

## **Basic OpenFOAM training for application engineers**

3 Feb 2016 to 4 Feb 2016 CFD & Multiphysics Bangalore, India

### VA One: FE/BEM Training

9 Feb 2016 to 10 Feb 2016 Vibro-Acoustics San Diego, CA

### **VA One: Coupled FEA/SEA Training**

11 Feb 2016 to 12 Feb 2016 Vibro-Acoustics San Diego, CA

## **Basic OpenFOAM and Visual-CFD Training**

17 Feb 2016 to 19 Feb 2016 CFD & Multiphysics Singapore

### **PAM-STAMP** for the automotive

industry (Group Learning)
17 Feb 2016 to 19 Feb 2016
Sheet Metal Forming
Farmington Hills, Detroit, MI

### **Introduction to QuikCAST**

23 Feb 2016 to 25 Feb 2016 Casting Farmington Hills, Detroit, MI

### **VA One: FE/BEM Training**

1 Mar 2016 to 2 Mar 2016 Vibro-Acoustics Farmington Hills, Detroit, MI

## **Basic OpenFOAM training for application engineers**

2 Mar 2016 to 3 Mar 2016 CFD & Multiphysics Pune, India

### **VA One: Coupled FEA/SEA Training**

3 Mar 2016 to 4 Mar 2016 Vibro-Acoustics Farmington Hills, Detroit, MI

## **VPS - Getting started with CRASH simulation**

7 Mar 2016 Crash, Impact & Safety Seoul, Korea **LSTC** Training

**LSTC** Visit the website for complete listings/changes/locations

www.lstc.com/training

### **February Training**

- · CA ALE/Eulerian/FSI
- · CA SPH

### March

- · MI Intro LS-PrePost
- · MI Intro LS-DYNA

### May

- · CA Intro LS-PrePost
- · CA Intro LS-DYNA
- · MI Contact
- · MI Composite

LS-DYNA OnLine Training

**LS-DYNA** Visit the website for complete listings/changes/locations

On Line <u>www.LSDYNA-ONLINE.COM</u>

For Information contact: courses@lsdyna-online.com or 513-3319139

### **Composite Materials In LS-DYNA**

This course will allow first time LS-DYNA users to use composite materials. The most important elements to start using all the composite material models in LS-DYNA will be presented in the 8 hours.

### Foam & Viscoelastic Materials in LS-DYNA

Objective of the course: Learn about several foam material models in LS-DYNA to solve engineering problems. Detailed descriptions are given of the data required to use such material in analysis. Examples are used to illustrate the points made in the lectures

### Plasticity, Plastics, and Viscoplastics Materials in LS-DYNA

Objective of the course: Learn about several plasticity based material models in LS-DYNA to solve engineering problems. Detailed descriptions are given of the data required to use such material in analysis. Examples are used to illustrate the points made in the lectures.

### **Rubber Materials in LS-DYNA**

Objective of the course: Learn about several rubber material models in LS-DYNA to solve engineering problems. Detailed descriptions are given of the data required to use such material in analysis. Examples are used to illustrate the points made in the lectures.



### **BETA CAE Systems S.A.**

### www.beta-cae.gr

### **BETA CAE Systems S.A.– ANSA**

An advanced multidisciplinary CAE pre-processing tool that provides all the necessary functionality for full-model build up, from CAD data to ready-to-run solver input file, in a single integrated environment. ANSA is a full product modeler for LS-DYNA, with integrated Data Management and Process Automation. ANSA can also be directly coupled with LS-OPT of LSTC to provide an integrated solution in the field of optimization.

### BETA CAE Systems S.A. – µETA

Is multi-purpose post-processor meeting diverging needs from various CAE disciplines. It owes its success to its impressive performance, innovative features and capabilities of interaction between animations, plots, videos, reports and other objects. It offers extensive support and handling of LS-DYNA 2D and 3D results. including those compressed with SCAI's FEMZIP software

### **Solutions for:**

Process Automation - Data Management - Meshing - Durability - Crash & Safety NVH - CFD - Thermal analysis - Optimization - Powertrain Products made of composite materials - Analysis Tools -

Maritime and Offshore Design - Aerospace engineering - Biomechanics



## THE CRAY® XCTM SERIES: ADAPTIVE SUPERCOMPUTING ARCHITECTURE

The Cray® XC<sup>TM</sup> series delivers on Cray's commitment to an adaptive supercomputing architecture that provides both extreme scalability and sustained performance. The flexibility of the Cray XC platform ensures that users can precisely configure the machines that will meet their specific requirements today, and remain confident they can upgrade and enhance their systems to address the demands of the future.

XC40-ACTM  $XC40^{TM}$ Cray® and supercomputers are enabled by a robust Intel® processor road map, Aries high performance interconnect and flexible Dragonfly network topology, providing low latency and scalable global bandwidth to satisfy multi-petaflops the most challenging applications.

While the extreme-scaling Cray XC40 supercomputer is a transverse air-flow liquid-cooled architecture, the Cray XC40-AC air-cooled model provides slightly smaller and less dense supercomputing cabinets with no requirement for liquid coolants or extra blower cabinets. A reduced network topology lowers costs, and the system is compatible with the compute technology, OS, ISV and software stack support of high-end XC40 systems.

## MAXIMIZE PRODUCTIVITY WITH CRAY CS SERIES SUPERCOMPUTERS

Understanding the need for nimble, reliable and cost-effective high performance computing (HPC), we developed the Cray® CS<sup>TM</sup> cluster supercomputer series. These systems are industry-standards-based, highly customizable, and expressly designed to handle the broadest range of medium- to large-scale simulation and data analytics workloads.

All CS components have been carefully selected, optimized and integrated to create a powerful HPC environment. Flexible node configurations featuring the latest processor and interconnect technologies mean you can tailor a system to your specific need — from an all-purpose cluster to one suited for shared memory, large memory or accelerator-based tasks.

Innovations in packaging, power, cooling and density translate to superior energy efficiency and compelling price/performance. Expertly engineered system management software instantly boosts productivity your by administration simplifying system and maintenance.

Maximize your productivity with flexible, high-performing Cray CS series cluster supercomputers.

## CRAY® SONEXION® SCALE-OUT LUSTRE®STORAGE SYSTEM

Brought to you by Cray, the world's leading experts in parallel storage solutions for HPC and technical enterprise, the Cray® Sonexion® 2000 system provides a Lustre®-ready solution popular x86 Linux® clusters and supercomputers through Cray Cluster Connect<sup>TM</sup>. As a leader in open systems and parallel file systems, Cray builds on open source Lustre to unlock any industry-standard x86 Linux compute cluster using InfiniBand<sup>TM</sup> or 10/40 GbE utilizing proven Cray storage architectures.

The Cray Sonexion 2000 system provides 50 percent more performance and capacity than the Sonexion 1600 system in the same footprint.

### **Simplify**

- Through its fully-integrated and preconfigured design, Cray Sonexion storage gets customers deployed faster and reduces the total number of components to manage.
- The Sonexion system's compact design reduces the total hardware footprint of petascale systems by 50 percent over component-based solutions.

### Scale

- Performance scales from 7.5 GB/s to 1.7 TB/s in a single file system.
- Capacity scales in modular increments; the Sonexion 2000 system stores over two usable petabytes in a single rack.
   Fewer drives and components reduce capital costs as capacity grows.

### **Protect**

- New software-based GridRAID offers higher levels of data protection and up to 3.5 times faster rebuild times than traditional RAID6 and MD-RAID storage.
- Cray ensures quality, reliability and stability at scale through exhaustive thermal and real-world stress testing, system hardening and availability, and tight hardware and software integration.

## OPEN ARCHIVE AND TIERED STORAGE SYSTEM FOR BIG DATA AND SUPERCOMPUTING

Cray Tiered Adaptive Storage (TAS), powered by Versity, is designed to meet the expansive data preservation and access needs driven by big data, where data needs to migrate fluidly from high performance storage to deep tape archives, while always being accessible to users.

### With Cray TAS you can:

- Deploy tiered storage and archives faster
- Feel confident preserving and protecting data into the future, using Linux®
- Simplify managing data using familiar tools for years to come

### CRAY® URIKA-XA™ EXTREME ANALYTICS PLATFORM

Pre-integrated, open platform for high performance analytics delivers valuable business insights now and into the future

The flexible, multi-use Cray® Urika-XA<sup>TM</sup> extreme analytics platform addresses perhaps the most critical obstacle in data analytics today — limitation. Analytics problems are getting more varied and complex but the available solution technologies have significant constraints. Traditional analytics appliances lock you into a single approach and building a custom solution in-house is so difficult and time consuming that the business value derived from analytics fails to materialize.

In contrast, the Urika-XA platform is open, high performing and cost effective, serving a

wide range of analytics tools with varying computing demands in a single environment. Pre-integrated with the Apache Hadoop® and Apache Spark<sup>TM</sup> frameworks, the Urika-XA system combines the benefits of a turnkey analytics appliance with a flexible, open platform that you can modify for future analytics workloads. This single-platform consolidation of workloads reduces your analytics footprint and total cost of ownership.

Based on pioneering work combining highperformance analytics and supercomputing technologies, the Urika-XA platform features next-generation capabilities. Optimized for compute-heavy, memory-centric analytics, it incorporates innovative use of memory-storage hierarchies and fast interconnects, which translates to excellent performance at scale on current as well as emerging analytics applications.

Additionally, the enterprise-ready Urika-XA platform eases the system management burden with a single point of support, standards-based software stack and compliance with enterprise standards so you can focus on extracting valuable business insights, not on managing your environment.

# THE URIKA-GD<sup>TM</sup> GRAPH DISCOVERY APPLIANCE IS A PURPOSE-BUILT SOLUTION FOR BIG DATA RELATIONSHIP ANALYTICS.

The Urika-GD™ appliance enables enterprises to:

- Discover unknown and hidden relationships and patterns in big data
- Build a relationship warehouse, supporting inferencing/deduction, pattern-based queries and intuitive visualization
- Perform real-time analytics on the largest and most complex graph problems

The Urika-GD system is a high performance graph appliance with a large shared memory and massively multithreaded custom processor designed for graph processing and scalable I/O.

With its industry-standard, open-source software stack enabling reuse of existing skill sets and no lock in, the Urika-GD appliance is easy to adopt.

The Urika-GD appliance complements an existing data warehouse or Hadoop® cluster by offloading graph workloads and interoperating within the existing enterprise analytics workflow.

Realize rapid time to powerful new insights.



### **DatapointLabs**

Testing over 1000 materials per year for a wide range of physical properties, DatapointLabs is a center of excellence providing global support to industries engaged in new product development and R&D.

The compary meets the material property needs of CAE/FEA analysts, with a specialized product line, TestPaks®, which allow CAE analysts to easily order material testing for the calibration of over 100 different material models.

DatapointLabs maintains a world-class testing facility with expertise in physical properties of plastics, rubber, food, ceramics, and metals.

### www.datapointlabs.com

Core competencies include mechanical, thermal and flow properties of materials with a focus on precision properties for use in product development and R&D.

Engineering Design Data including material model calibrations for CAE Research Support Services, your personal expert testing laboratory Lab Facilities gives you a glimpse of our extensive test facilities Test Catalog gets you instant quotes for over 200 physical properties.



### ETA – Engineering Technology Associates

etainfo@eta.com

### Inventium Suite<sup>TM</sup>

Inventium Suite<sup>TM</sup> is an enterprise-level CAE software solution, enabling concept to product. Inventium's first set of tools will be released soon, in the form of an advanced Pre & Post processor, called PreSys.

Inventium's unified and streamlined product architecture will provide users access to all of the suite's software tools. By design, its products will offer a high performance modeling and post-processing system, while providing a robust path for the integration of new tools and third party applications.

### **PreSys**

Inventium's core FE modeling toolset. It is the successor to ETA's VPG/PrePost and FEMB products. PreSys offers an easy to use interface, with drop-down menus and toolbars,

### www.eta.com

increased graphics speed and detailed graphics capabilities. These types of capabilities are combined with powerful, robust and accurate modeling functions.

### **VPG**

Advanced systems analysis package. VPG delivers a unique set of tools which allow engineers to create and visualize, through its modules-structure, safety, drop test, and blast analyses.

### **DYNAFORM**

Complete Die System Simulation Solution. The most accurate die analysis solution available today. Its formability simulation creates a "virtual tryout", predicting forming problems such as cracking, wrinkling, thinning and spring-back before any physical tooling is produced



### **ESI Group**

Visual-Environment is an integrative simulation platform for simulation tools operating either concurrently or standalone for various solver. Comprehensive and integrated solutions for meshing, pre/post processing, automation and simulation process available within management are environment enabling seamless execution and automation of tedious workflows. This very open and versatile environment simplifies the work of CAE engineers across the enterprise by facilitating collaboration and data sharing leading to increase of productivity.

Visual-Crash **DYNA** provides advanced preprocessing functionality for LS-DYNA users, e.g. fast iteration and rapid model revision processes, from data input to visualization for crashworthiness simulation and design. It ensures quick model browsing, advanced mesh editing capabilities and rapid graphical assembly of system models. Visual-Crash DYNA allows graphical creation, modification and deletion of LS-DYNA entities. It comprises tools for checking model quality and simulation parameters prior to launching calculations with the solver. These

### www.esi-group.com

tools help in correcting errors and fine-tuning the model and simulation before submitting it to the solver, thus saving time and resources. Several high productivity tools such as advanced dummy positioning, seat morphing, belt fitting and airbag folder are provided in **Visual-Safe**, a dedicated application to safety utilities.

**Visual-Mesh** is a complete meshing tool supporting CAD import, 1D/2D/3D meshing and editing for linear and quadratic meshes. It supports all meshing capabilities, like shell and solid automesh, batch meshing, topo mesh, layer mesh, etc. A convenient Meshing Process guides you to mesh the given CAD component or full vehicle automatically.

Visual-Viewer built on a multi-page/multi-plot environment, enables data grouping into pages and plots. The application allows creation of any number of pages with up to 16 windows on a single page. These windows can be plot, animation, video, model or drawing block windows. Visual-Viewer performs automated tasks and generates customized reports and thereby increasing engineers' productivity.



### **ESI Group**

**Visual-Process** provides a whole suite of generic templates based on LS-DYNA solver (et altera). It enables seamless and interactive process automation through customizable LS-DYNA based templates for automated CAE workflows.

All generic process templates are easily accessible within the unique framework of Visual-Environment and can be customized upon request and based on customer's needs.

**Visual***DSS* is a framework for Simulation Data and Process Management which connects with Visual-Environment and supports product

### Latest Release is Visual-Environment v11.0

### www.esi-group.com

engineering teams, irrespective of their geographic location, to make correct and realistic decisions throughout the virtual Visual DSS prototyping phase. supports seamless connection with various CAD/PLM systems to extract the data required for building virtual tests as well as building and chaining several virtual tests upstream and downstream to achieve an integrated process. It enables the capture, storage and reuse of enterprise knowledge and best practices, as well as the automation of repetitive and cumbersome tasks a virtual prototyping process, propagation of engineering changes or design changes from one domain to another.



### **JSOL** Corporation

### www.jsol.co.jp/english/cae/

### **HYCRASH**

Easy-to-use step solver, for one Stamping-Crash Coupled Analysis. HYCRASH only requires the panels' geometry to calculate manufacturing process effect, geometry of die are not necessary. Additionally, as this is target to usage of crash/strength analysis, even forming analysis data is not needed. If only crash/strength analysis data exists and panel ids is defined. HYCRASH extract panels to calculate it's strain, thickness, and map them to the original data.

### JSTAMP/NV

As an integrated press forming simulation system for virtual tool shop

the JSTAMP/NV meets the various industrial needs from the areas of automobile, electronics, iron and steel, etc. The JSTAMP/NV gives satisfaction to engineers, reliability to products, and robustness to tool shop via the advanced technology of the JSOL Corporation.

### **JMAG**

JMAG uses the latest techniques to accurately model complex geometries, material properties, and thermal and structural phenomena associated with electromagnetic fields. With its excellent analysis capabilities, JMAG assists your manufacturing process



### Livermore Software Technology Corp.

#### LS-DYNA

A general-purpose finite element program capable of simulating complex real world problems. It is used by the automobile, aerospace, construction, military, manufacturing, and bioengineering industries. LS-DYNA is optimized for shared and distributed memory Unix, Linux, and Windows based, platforms, and it is fully QA'd by LSTC. The code's origins lie in highly nonlinear, transient dynamic finite element analysis using explicit time integration.

**LS-PrePost:** An advanced pre and post-processor that is delivered free with LS-DYNA. The user interface is designed to be both efficient and intuitive. LS-PrePost runs on Windows, Linux, and Macs utilizing OpenGL graphics to achieve fast rendering and XY plotting.

**LS-OPT:** LS-OPT is a standalone Design Optimization and Probabilistic Analysis package with an interface to LS-DYNA. The graphical preprocessor LS-OPTui facilitates

### www.lstc.com

definition of the design input and the creation of a command file while the postprocessor provides output such as approximation accuracy, optimization convergence, tradeoff curves, anthill plots and the relative importance of design variables.

LS-TaSC: A Topology and Shape Computation tool. Developed for engineering analysts who need to optimize structures, LS-TaSC works with both the implicit and explicit solvers of LS-DYNA. LS-TaSC handles topology optimization of large non-linear problems, involving dynamic loads and contact conditions.

### **LSTC Dummy Models:**

Anthropomorphic Test Devices (ATDs), as known as "crash test dummies", are life-size mannequins equipped with sensors that measure forces, moments, displacements, and accelerations.

**LSTC Barrier Models:** LSTC offers several Offset Deformable Barrier (ODB) and Movable Deformable Barrier (MDB) model.



### **Oasys Ltd. LS-DYNA Environment**

The Oasys Suite of software is exclusively written for LS-DYNA® and is used worldwide by many of the largest LS-DYNA® customers. The suite comprises of:

### **Oasys PRIMER**

### Key benefits:

- Pre-Processor created specifically for LS-DYNA®
- Compatible with the latest version of LS-DYNA®
- · Maintains the integrity of data
- Over 6000 checks and warnings many auto-fixable
- Specialist tools for occupant positioning, seatbelt fitting and seat squashing (including setting up presimulations)
- Many features for model modification, such as part replace
- Ability to position and depenetrate impactors at multiple locations and produce many input decks

### www.oasys-software.com/dyna

- automatically (e.g. pedestrian impact, interior head impact)
- Contact penetration checking and fixing
- Connection feature for creation and management of connection entities.
- Support for Volume III keywords and large format/long labels
- Powerful scripting capabilities allowing the user to create custom features and processes

www.oasys-software.com/dyna

### **Oasys D3PLOT**

### Key benefits:

- Powerful 3D visualization postprocessor created specifically for LS-DYNA®
- · Fast, high quality graphics
- Easy, in-depth access to LS-DYNA® results
- Scripting capabilities allowing the user to speed up post-processing, as well as creating user defined data components



### Oasys T/HIS

### Key benefits:

- Graphical post-processor created specifically for LS-DYNA®
- Automatically reads all LS-DYNA® results
- Wide range of functions and injury criteria
- Easy handling of data from multiple models
- Scripting capabilities for fast postprocessing

### **Oasys REPORTER**

### Key benefits:

- Automatic report generation tool created specifically for LS-DYNA®
- Automatically post-process and summarize multiple analyses
- Built-in report templates for easy automatic post-processing of many standard impact tests



### Shanghai Hengstar

Center of Excellence: Hengstar Technology is the first LS-DYNA training center of excellence in China. As part of its expanding commitment to helping CAE engineers in China, Hengstar Technology will continue to organize high level training courses, seminars, workshops, forums etc., and will also continue to support CAE events such as: China CAE Annual Conference; China Conference of Automotive Safety Technology; International Forum of Automotive Traffic Safety in China; LS-DYNA China users conference etc.

On Site Training: Hengstar Technology also provides customer customized training programs on-site at the company facility. Training is tailored for customer needs using LS-DYNA such as material test and input keyword preparing; CAE process automation with customized script program; Simulation result correlation with the test result; Special topics with new LS-DYNA features etc..

### www.hengstar.com

Distribution & Support: Hengstar distributes and supports LS-DYNA, LS-OPT, LS-Prepost, LS-TaSC, LSTC FEA Models; Hongsheng Lu, previously was directly employed by LSTC before opening his distributorship in China for LSTC software. Hongsheng visits LSTC often to keep update on the latest software features.

Hengstar also distributes and supports d3View; Genesis, Visual DOC, ELSDYNA; Visual-Crash Dyna, Visual-Process, Visual-Environment; EnkiBonnet; and DynaX & MadyX etc.

### Consulting

As a consulting company, Hengstar focus on LS-DYNA applications such as crash and safety, durability, bird strike, stamping, forging, concrete structures, drop analysis, blast response, penetration etc with using LS-DYNA's advanced methods: FEA, ALE, SPH, EFG, DEM, ICFD, EM, CSEC..



Lenovo www.lenovo.com

Lenovo is a USD39 billion personal and enterprise technology company, serving customers in more than 160 countries.

Dedicated to building exceptionally engineered PCs, mobile Internet devices and servers spanning entry through supercomputers, Lenovo has built its business on product innovation, a highly efficient global supply

chain and strong strategic execution. The company develops, manufactures and markets reliable, high-quality, secure and easy-to-use technology products and services.

Lenovo acquired IBM's x86 server business in 2014. With this acquisition, Lenovo added award-winning System x enterprise server portfolio along with HPC and CAE expertise.



Penguin Computing provides customized build-to-order server solutions for enterprises and institutions with special hardware requirements. We complement our hardware and software solutions with Penguin Computing on Demand (POD)—a public HPC cloud that provides supercomputing capabilities on-demand on a pay-as-you-go basis.

Penguin is a one-stop shop for HPC and enterprise customers, providing solutions for a wide array of computing needs and user profiles:

HPC and cloud solutions optimized for industry-specific uses

High-powered workstations for individual power users

Highly power-efficient server platforms for enterprise computing

Private and public cloud solutions, including hybrid options.

Focus

### www.penguincomputing.com

Penguin Computing is strictly focused on delivering Linux-optimized enterprise solutions. We use a thorough, proven hardware qualification and testing process to ensure that our solutions deliver optimal performance and robustness.

Penguin's in-house development team is dedicated to providing a complete highly interoperable software stack that is tuned for Penguin hardware. As a result our solutions are easy-to-use and "just work." Our integrated approach even extends to our hybrid compute solutions, which combine local and cloud computing resources, taking ease-of-use and cost-effectiveness to the next level. Penguin customers can reduce capital expenditures by right-sizing clusters for average resource utilization and easily and quickly offload excess workload into the cloud.

Penguin also offers a full range of services and support that is backed by a seasoned team of Linux, HPC and application experts. Canada Metal Forming Analysis Corp MFAC galb@mfac.com

www.mfac.com

LS-DYNA LS-OPT LS-PrePost LS-TaSC

LSTC Dummy Models LSTC Barrier Models eta/VPG

eta/DYNAFORM INVENTIUM/PreSys

 United States
 DYNAMAX
 sales@dynamax-inc.com

 LS-DYNA
 LS-OPT
 LS-PrePost
 LS-TaSC

 LSTC Dummy Models
 LSTC Barrier Models

United **States** 

**ESI-Group N.A** 

www.esi-group.com

QuikCAST

**SYSWELD** 

PAM-RTM

PAM-CEM

VA One

CFD-ACE+

**ProCAST** 

Visual-

**Process** 

**VisualDSS** 

Weld Planner

Visual-Environment

IC.IDO

United States

Engineering Technology Associates – ETA etainfo@eta.com

www.eta.com

INVENTIUM/PreSy

**NISA** 

**VPG** 

LS-DYNA

LS-OPT

**DYNAform** 

United States

Gompute

www.gompute.com

info@gompute.com

LS-DYNA Cloud Service

Additional software

**Additional Services** 

United States

**Comet Solutions** 

steve.brown@cometsolutions.com

Comet Software

Distribution/Consulting US/Canada Distribution/Consulting

United Livermore Software Technology Corp <a href="mailto:sales@lstc.com">sales@lstc.com</a>

States LSTC www.lstc.com

LS-DYNA LS-OPT LS-PrePost LS-TaSC

LSTC Dummy Models LSTC Barrier Models TOYOTA THUMS

United Predictive Engineering george.laird@predictiveengineering.com

States <u>www.predictiveengineering.com</u>

FEMAP NX Nastran LS-DYNA LS-OPT

LS-PrePost LS-TaSC LSTC Dummy Models

LSTC Barrier Models

France DynaS+ v.lapoujade@dynasplus.com

www.dynasplus.com Oasys Suite

LS-DYNA LS-OPT LS-PrePost LS-TaSC

DYNAFORM VPG MEDINA

LSTC Dummy Models

LSTC Barrier Models

Germany CADFEM GmbH <u>lsdyna@cadfem.de</u>

www.cadfem.de

ANSYS LS-DYNA optiSLang

ESAComp AnyBody

ANSYS/LS-DYNA

| Distribution/Consulting |                                 | Europe     |                             | Distribution/Consulting |  |
|-------------------------|---------------------------------|------------|-----------------------------|-------------------------|--|
| Germany                 | DYNAmore Gmbl                   | I          | uli.franz@dynamore.de       |                         |  |
|                         | PRIMER                          | LS-DYNA    | FTSS                        | VisualDoc               |  |
|                         | LS-OPT                          | LS-PrePost | LS-TaSC                     | DYNAFORM                |  |
|                         | Primer                          | FEMZIP     | GENESIS                     | Oasys Suite             |  |
|                         | TOYOTA THUMS                    |            | LSTC Dummy & Barrier Models |                         |  |
| The<br>Netherlands      | Infinite Simulation Systems B.V |            | j.mathijssen@infinite.nl    |                         |  |
|                         | www.infinite.nl                 |            |                             |                         |  |
|                         | ANSYS Products                  | CivilFem   | CFX                         | Fluent                  |  |
|                         | LS-DYNA                         | LS-PrePost | LS-OPT                      | LS-TaSC                 |  |
|                         |                                 |            |                             |                         |  |

| Italy  | EnginSoft SpA                                   |         | info@enginsoft.it        |              |
|--------|-------------------------------------------------|---------|--------------------------|--------------|
|        | www.enginsoft.it                                |         |                          |              |
|        | ANSYS                                           | MAGMA   | Flowmaster               | FORGE        |
|        | CADfix                                          | LS-DYNA | Dynaform                 | Sculptor     |
|        | ESAComp                                         | AnyBody | FTI Software             |              |
|        | AdvantEdge                                      | Straus7 | LMS Virtual.Lab          | ModeFRONTIER |
| Russia | STRELA                                          |         | info@dynarussia.com      |              |
|        | LS-DYNA                                         | LS-TaSC | LS-OPT                   | LS-PrePost   |
|        | LSTC Dummy Models                               |         | LSTC Barrier Models      |              |
| Sweden | DYNAmore Nordic  www.dynamore.se                |         | marcus.redhe@dynamore.se |              |
|        |                                                 |         | Oasys Suite              |              |
|        | ANSA                                            | μΕΤΑ    | LS-DYNA                  | LS-OPT       |
|        | LS-PrePost                                      | LS-TaSC | FastFORM                 | DYNAform     |
|        | FormingSuite                                    |         | LSTC Dummy Models        |              |
|        |                                                 |         | LSTC Barrier Models      |              |
| Sweden | GOMPUTE  www.gridcore.se  LS-DYNA Cloud Service |         | info@gridcore.com        |              |
|        |                                                 |         | www.gompute.com          |              |
|        |                                                 |         | Additional software      |              |

| Distribution/Consulting |                                                  | Europ      | oe Distri           | bution/Consulting |
|-------------------------|--------------------------------------------------|------------|---------------------|-------------------|
| Switzerland             | DYNAmoreSwiss GmbH www.dynamore.ch               |            | info@dynamore.ch    |                   |
|                         | LS-DYNA                                          |            | LS-OPT              | LS-PrePost        |
|                         | LS-TaSC                                          |            | LSTC Dummy Models   |                   |
|                         |                                                  |            | LSTC Barrier Models |                   |
| UK                      | Ove Arup & Partners  www.oasys-software.com/dyna |            | dyna.sales@arup.cor | <u>n</u>          |
|                         | LS-DYNA                                          |            | LS-OPT              | LS-PrePost        |
|                         | LS-TaSC                                          | PRIMER     | D3PLOT              | T/HIS             |
|                         | REPORTER                                         | SHELL      | FEMZIP              | HYCRASH           |
|                         | DIGIMAT                                          | Simpleware | LSTC Dummy Mode     | els               |

LSTC Barrier Models

| China | ETA – China                  |               | lma@eta.com.cn        |               |  |
|-------|------------------------------|---------------|-----------------------|---------------|--|
|       | www.eta.com/cn Inventium     | VPG           | DYNAFORM              | NISA          |  |
|       | LS-DYNA                      | LS-OPT        | LSTC Dummy Models     | LS-PrePost    |  |
|       | LS-DINA                      | LS-OI I       | LSTC Barrier Models   | LS-TaSC       |  |
|       |                              |               | LSTC Darrier Wioders  | LS-1 asC      |  |
| China | Oasys Ltd. China             |               | Stephen.zhao@arup.com |               |  |
|       | www.oasys-software.          | com/dyna      |                       |               |  |
|       | PRIMER D3PLO                 | Γ HYCRASH     | T/HIS REPORTER        | SHELL         |  |
|       | LS-DYNA                      | LS-OPT        | LSTC Dummy Models     | LS-PrePost    |  |
|       | DIGIMAT                      | <b>FEMZIP</b> | LSTC Barrier Models   | LS-TaSC       |  |
|       |                              |               |                       |               |  |
| China | Shanghai Hengstar Technology |               | info@hengstar.com     |               |  |
|       | www.hengstar.com             |               |                       |               |  |
|       | LS-DYNA                      | LS-TaSC       | LSTC Barrier Models   | D3VIEW        |  |
|       | LS-PrePOST                   | LS-OPT        | LSTC Dummy Models     |               |  |
|       | Genesis                      | VisualDoc     |                       | ELSDYNA       |  |
|       | Visual-Crahs DYNA            | Visual-Proece | S                     | DynaX & MadyX |  |
|       | Enki Bonnet                  | Visual Enviro | Visual Environement   |               |  |

India Oasys Ltd. India <a href="mailto:lavendra.singh@arup.com">lavendra.singh@arup.com</a>

www.oasys-software.com/dyna

PRIMER D3PLOT T/HIS

LS-OPT LSTC Dummy Models LS-PrePost

LS-DYNA LSTC Barrier Models LS-TaSC

India CADFEM Eng. Svce info@cadfem.in

www.cadfem.in

ANSYS VPS ESAComp optiSLang

LS-DYNA LS-OPT LS-PrePost

India Kaizenat Technologies Pvt. Ltd support@kaizenat.com

http://kaizenat.com/

LS-DYNA LS-OPT LSTC Dummy Models LS-PrePost

Complete LS-DYNA suite of products LSTC Barrier Models LS-TaSC

| Distribution/Consulting |                                | Asia Pacific                          | Distribution/Consulting |         |
|-------------------------|--------------------------------|---------------------------------------|-------------------------|---------|
| Japan                   | CTC www.engineering-eye.com    | LS-dyna@ctc-g.co.jp                   |                         |         |
|                         | LS-DYNA                        | LS-OPT                                | LS-PrePost              | LS-TaSC |
|                         | LSTC Dummy Models              | LSTC Barrier Models                   | CmWAVE                  |         |
| Towar                   | JSOL                           |                                       |                         |         |
| Japan                   | www.jsol.co.jp/english/cae     |                                       | Oasys Suite             |         |
|                         | JSTAMP                         | HYCRASH                               | JMAG                    |         |
|                         | LS-DYNA                        | LS-OPT                                | LS-PrePost              | LS-TaSC |
|                         | LSTC Dummy Models              | LSTC Barrier Models                   | ТОҮОТА ТН               |         |
|                         |                                |                                       |                         |         |
| Japan                   | FUJITSU                        |                                       |                         |         |
|                         | http://jp.fujitsu.com/solution |                                       |                         |         |
|                         | LS-DYNA                        | LS-OPT                                | LS-PrePost              | LS-TaSC |
|                         | LSTC Dummy Models              | LSTC Barrier Models                   | CLOUD Servi             | ices    |
| Japan                   | LANCEMORE                      | info@lancemore.jp                     |                         |         |
|                         | www.lancemore.jp/index_er      | <u>n.html</u>                         |                         |         |
|                         | Consulting                     |                                       |                         |         |
|                         | LS-DYNA                        | LS-OPT                                | LS-PrePost              | LS-TaSC |
|                         | LSTC Dummy Models              | LSTC Barrier Models                   |                         |         |
| Japan                   | Terrabyte                      | English:                              |                         |         |
|                         | www.terrabyte.co.jp            | www.terrabyte.co.jp/english/index.htm |                         |         |
|                         | Consulting                     |                                       |                         |         |
|                         | LS-DYNA                        | LS-OPT                                | LS-PrePost              | LS-TaSC |
|                         | LSTC Dummy Models              | LSTC Barrier Models                   | AnyBody                 |         |

| Distribution/Consulting |                           | Asia Pacific        | Distributi        | on/Consulting |
|-------------------------|---------------------------|---------------------|-------------------|---------------|
| Korea                   | THEME www.lsdyna.co.kr    | wschung@kornet.co   | om<br>Oasys Suite |               |
|                         | LS-DYNA                   | LS-OPT              | LS-PrePost        | LS-TaSC       |
|                         | LSTC Dummy Models         | LSTC Barrier Models | eta/VPG           | Planets       |
|                         | eta/DYNAFORM              | FormingSuite        | Simblow           | TrueGRID      |
|                         | JSTAMP/NV                 | Scan IP             | Scan FE           | Scan CAD      |
|                         | FEMZIP                    |                     |                   |               |
| Korea                   | KOSTECH www.kostech.co.kr | young@kostech.co.   | <u>kr</u>         |               |

LS-OPT

**DIGIMAT** 

TrueGrid

LSTC Barrier Models

LS-PrePost

eta/VPG

Simuform

**FEMZIP** 

LS-TaSC

Simpack

FCM

LS-DYNA

AxStream

LSTC Dummy Models

eta/DYNAFORM

| Distribution/Consulting |                              | Asia Pacific        | Distribution/Consulting |         |
|-------------------------|------------------------------|---------------------|-------------------------|---------|
| Taiwan                  | Flotrend www.flotrend.com.tw | gary@flotrend.tw    |                         |         |
|                         | LS-DYNA                      | LS-OPT              | LS-PrePost              | LS-TaSC |
|                         | LSTC Dummy Models            | LSTC Barrier Models | eta/VPG                 | FCM     |
|                         |                              |                     |                         |         |
| Taiwan                  | APIC www.apic.com.tw         |                     |                         |         |
|                         | LS-DYNA                      | LS-OPT              | LS-PrePost              | LS-TaSC |
|                         | LSTC Dummy Models            | LSTC Barrier Models | eta/VPG                 | FCM     |
|                         |                              |                     |                         |         |



#### POD (Penguin Computing on Demand) offers software including LSTC's LS-DYNA

www.penguincomputing.com/services/hpc-cloud

#### Penguin HPC clusters are optimized for engineering workloads and offer:

- · Instant access to an HPC Cloud Cluster
- · High performance InfiniBand bare-metal compute
- Free support from HPC experts
- No charges for network transfers
- Cost-effective, pay-per-use billing model
- · Secure environment for private data
- Detailed billing reports for user groups and projects

#### Self Registration Portal – featuring rich--documentation, wiki, FAQ, pricing and more.

https://pod.penguincomputing.com/

### POD Software Applications and Libraries (visit site for complete listing) EEA CED and EDTD Modeling

#### FEA, CFD and FDTD Modeling

- LS-DYNA / LS-PrePost LS-DYNA is an advanced general-purpose multiphysics simulation software package. Its core-competency lie in highly nonlinear transient dynamic finite element analysis (FEA) using explicit time integration. LS-PrePost is an advanced pre and post-processor that is delivered free with LS-DYNA.
- **OpenFoam:** OpenFOAM (Open source Field Operation And Manipulation) is a C++ toolbox for the development of customized numerical solvers, and pre-/post-processing utilities for the solution of continuum mechanics problems, including computational fluid dynamics (CFD).



- ANSYS HFSS: ANSYS HFSS software is the industry standard for simulating 3-D fullwave electromagnetic fields. Its gold-standard accuracy, advanced solver and compute technology have made it an essential tool for engineers designing high-frequency and highspeed electronic components.
- ANSYS Fluent ANSYS Fluent software contains the broad physical modeling capabilities needed to model flow, turbulence, heat transfer, and reactions for industrial applications.
- Star-CD and Star-CCM+: STAR-CCM+ is CD-adapco's newest CFD software product. It
  uses the well established CFD solver technologies available in STAR-CD, and it employs a
  new client-server architecture and object oriented user interface to provide a highly integrated
  and powerful CFD analysis environment to users.
- Convergent: CONVERGE is a Computational Fluid Dynamics (CFD) code that completely eliminates the user time needed to generate a mesh through an innovative run-time mesh generation technique.
- Lumerical: Simulation tools that implement FDTD algorithms.



Cloud computing services

for

JSOL Corporation LS-DYNA users in Japan

JSOL Corporation is cooperating with chosen cloud computing services

JSOL Corporation, a Japanese LS-DYNA distributor for Japanese LS-DYNA customers.

LS-DYNA customers in industries / academia / consultancies are facing to the increase use of LS-DYNA more and more in recent years.

In calculations of optimization, robustness, statistical analysis, larger amount of LS-DYNA license in short term are required.

JSOL Corporation is cooperating with some cloud computing services for JSOL's LS-DYNA users and willing to provide large in short term license.

This service is offered to the customers by the additional price to existence on-premises license, which is relatively inexpensive than purchasing yearly license.

The following services are available

(only in Japanese).

#### **HPC OnLine**

NEC Solution Innovators, Ltd. http://jpn.nec.com/manufacture/machinery/hpc\_online/

#### **Focus**

Foundation for Computational Science http://www.j-focus.or.jp

#### **Platform Computation Cloud**

CreDist.Inc.

http://www.credist.co.jp/

#### **PLEXUS CAE**

Information Services International-Dentsu, Ltd. (ISID) https://portal.plexusplm.com/plexus-cae/

#### **SCSK Corporation**

http://www.scsk.jp/product/keyword/keyword07.html

Contact; JSOL Corporation Engineering Technology Division <a href="mailto:cae-info@sci.jsol.co.jp">cae-info@sci.jsol.co.jp</a>

#### **Rescale Cloud Simulation Platform**

#### www.rescale.com



Rescale: Cloud Simulation Platform

#### The Power of Simulation Innovation

We believe in the power of innovation. Engineering and science designs and ideas are limitless. So why should your hardware and software be limited? You shouldn't have to choose between expanding your simulations or saving time and budget.

Using the power of cloud technology combined with LS-DYNA allows you to:

- · Accelerate complex simulations and fully explore the design space
- Optimize the analysis process with hourly software and hardware resources
- · Leverage agile IT resources to provide flexibility and scalability

#### True On-Demand, Global Infrastructure

Teams are no longer in one location, country, or even continent. However, company data centers are often in one place, and everyone must connect in, regardless of office. For engineers across different regions, this can

cause connection issues, wasted time, and product delays.

Rescale has strategic/technology partnerships with infrastructure and software providers to offer the following:

- · Largest global hardware footprint GPUs, Xeon Phi, InfiniBand
- · Customizable configurations to meet every simulation demand
- · Worldwide resource access provides industry-leading tools to every team
- · Pay-per-use business model means you only pay for the resources you use
- · True on-demand resources no more queues

## ScaleX Enterprise: Transform IT, Empower Engineers, Unleash Innovation

The ScaleX Enterprise simulation platform provides scalability and flexibility to companies while offering enterprise IT and management teams the opportunity to expand and empower their organizations.

#### **Rescale Cloud Simulation Platform**

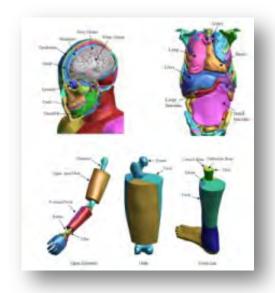
ScaleX Enterprise allows enterprise companies to stay at the leading edge of computing technology while maximizing product design and accelerating the time to market by providing:

- Collaboration tools
- Administrative control
- · API/Scheduler integration
- · On-premise HPC integration

#### **Industry-Leading Security**

Rescale has built proprietary, industry-leading security solutions into the platform, meeting the

needs of customers in the most demanding and competitive industries and markets.

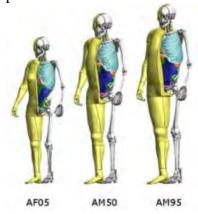

- · Manage engineering teams with user authentication and administrative controls
- Data is secure every step of the way with end-to-end data encryption
- · Jobs run on isolated, kernel-encrypted, private clusters
- Data centers include biometric entry authentication
- · Platforms routinely submit to independent external security audits

Rescale maintains key relationships to provide LS-DYNA on demand on a global scale. If you have a need to accelerate the simulation process and be an innovative leader, contact Rescale or the following partners to begin running LS-DYNA on Rescale's industry-leading cloud simulation platform.

LSTC - DYNAmore GmbH JSOL Corporation

Rescale, Inc. - 1-855-737-2253 (1-855-RESCALE) - info@rescale.com - 944 Market St. #300, San Francisco, CA 94102 USA

#### **TOYOTA - Total Human Model for Safety - THUMS**




The Total Human Model for Safety, or THUMS®, is a joint development of Toyota Motor Corporation and Toyota Central R&D Labs. Unlike dummy models, which are simplified representation of humans, THUMS represents actual humans in detail, including the outer shape, but also bones, muscles, ligaments, tendons, and internal organs. Therefore, THUMS can be used in automotive crash simulations to identify safety problems and find their solutions.

Each of the different sized models is available as sitting model to represent vehicle occupants



and as standing model to represent pedestrians.



The internal organs were modeled based on high resolution CT-scans.

THUMS is limited to civilian use and may under no circumstances be used in military applications.

#### LSTC is the US distributor for THUMS.

Commercial and academic licenses are available.

For information please contact: <a href="mailto:THUMS@lstc.com">THUMS@lstc.com</a>

THUMS®, is a registered trademark of Toyota Central R&D Labs.

#### LSTC - Dummy Models

#### LSTC Crash Test Dummies (ATD)

Meeting the need of their LS-DYNA users for an affordable crash test dummy (ATD), LSTC offers the LSTC developed dummies at no cost to LS-DYNA users.

LSTC continues development on the LSTC Dummy models with the help and support of their customers. Some of the models are joint developments with their partners.

e-mail to: atds@lstc.com

## Models completed and available (in at least an alpha version)

- •Hybrid III Rigid-FE Adults
- •Hybrid III 50th percentile FAST
- •Hybrid III 5th percentile detailed
- •Hybrid III 50th percentile detailed
- •Hybrid III 50th percentile standing
- •EuroSID 2
- FuroSID 2re
- •SID-IIs Revision D
- •USSID
- Free Motion Headform
- Pedestrian Legform Impactors

#### Models In Development

- Hybrid III 95th percentile detailed
- •Hybrid III 3-year-old
- •Hybrid II
- WorldSID 50th percentile
- •THOR NT FAST
- Ejection Mitigation Headform

#### **Planned Models**

- •FAA Hybrid III
- FAST version of THOR NT
- FAST version of EuroSID 2
- •FAST version of EuroSID 2re
- Pedestrian Headforms
- •Q-Series Child Dummies
- •FLFX-PLI

#### **LSTC - Barrier Models**

Meeting the need of their LS-DYNA users for affordable barrier models, LSTC offers the LSTC developed barrier models at no cost to LS-DYNA users.

LSTC offers several Offset Deformable Barrier (ODB) and Movable Deformable Barrier (MDB) models:

- •ODB modeled with shell elements
- •ODB modeled with solid elements
- ODB modeled with a combination of shell and solid elements
- MDB according to FMVSS 214 modeled with shell elementsMDB according to FMVSS 214
- modeled with solid elements

- •MDB according to ECE R-95 modeled with shell elements
- •AE-MDB modeled with shell elements
- •IIHS MDB modeled with shell elements
- •IIHS MDB modeled with solid elements
- •RCAR bumper barrier
- RMDB modeled with shell and solid elements

e-mail to: atds@lstc.com.

Social Media Social Media



BETA CAE SYSTEMS SA CADFEM Cray Inc.

ESI Group Lenovo



BETA CAE SYSTEMS SA Cray Inc. ESI Group

ETA CADFEM Lenovo



BETA CAE SYSTEMS SA CADFEM Cray Inc.

<u>DYNAmore Nordic</u> <u>ETA</u> <u>Oasys</u>





| YOUTUBE Channel     | WebSite URL                    |
|---------------------|--------------------------------|
|                     |                                |
| BETA CAE SYSTEMS SA | www.beta-cae.gr                |
|                     |                                |
| CADFEM              | www.cadfem.de                  |
|                     |                                |
| <u>Cray Inc.</u>    | www.cray.com                   |
|                     |                                |
| ESI Group           | www.esi-group.com              |
|                     |                                |
| ETA                 | www.eta.com                    |
|                     |                                |
| <u>Lancemore</u>    | www.lancemore.jp/index_en.html |
|                     |                                |
| Lenovo              |                                |
|                     |                                |

### **Publications Showcase**

The following paper has been submitted so share with the engineering community.

All papers are copyright to the respective authors and companies and reprinted with permission

New Material Models for Carbon Fiber Compression Molding Simulation in LS-DYNA

Qiangsheng Zhao

Livermore Software Technology Corporate, Livermore, California, USA

# New Material Models for Carbon Fiber Compression Molding Simulation in LS-DYNA Qiangsheng Zhao

Livermore Software Technology Corporate, Livermore, California, USA

#### Abstract:

With automotive industry adopting carbon fiber reinforced plastic as a new weight saving measure, LS-DYNA developed several new material models to simulate the compression molding manufacturing process of carbon fiber composite. MAT 277 is based on viscoelastic material model MAT 076, with Prony series of viscoelasticity being functions of the curing degree, which is in turn modeled with Kamal model. MAT 277 is capable of modeling curing process of epoxy resin. MAT 278 employs a micro mechanics model to include both carbon fiber, with reorientation, and viscoelastic epoxy resin, with curing kinetics, in one material card.

**Keyword:** Carbon fiber, woven carbon fiber, curing, reorientation

#### 1 Introduction

With Corporate Average Fuel Economy (CAFE) law requiring 42 miles per gallon by 2020 and 54.5 mpg by 2025, car manufacturers are now searching for new lightweight materials. Aluminum and magnesium have been successfully utilized to save weight in body panels and engine blocks for decades. To further save weight, carbon fiber emerged as a great choice. While sports cars like formula 1 have been using carbon fiber for many years, it is only until 2014 when BMW introduced the first mass production car i3 with carbon fiber bodywork. Other car manufacturers, like Ford and Toyota, also start considering carbon fiber for mass production. Thus, there is an urgent need to model carbon fiber manufacturing process and its crashworthiness.

One of the widely used techniques for making carbon fiber composites in automotive industry is by using prepreg, which is carbon fiber pre-impregnated with epoxy resin and resin hardener. Process of prepreg being cured under heat and pressure is called compression molding, which produce complex parts with a high quality surface finish, low resin content and great structural performance.

Several new material models have been implemented to simulation the aforementioned compression molding process of carbon fiber composite. MAT 277 ADHESIVE CURING VISCOELASTIC is useful to model adhesive viscoelastic material during chemical curing. MAT 234 VISCOELASTIC LOOSE FABRIC is mechanism model which incorporates the crimping of fibers as well as the trellising with reorientation of yarns and locking phenomenon observed loose fabric. These two material models together with PART\_COMPOSITE can be used to model compression molding process. MAT 278 CARBON FIBER MICROMECHANICS is another new material model which takes a micro-mechanics approach to include both fiber reorientation and resin curing in one material card.

In the rest of this paper, Section 2 will first introduce MAT 277 and a simulation of complete curing process under displacement boundary condition and heating/cooling cycle. Section 3 will give a preliminary look into the new material model MAT 278.

#### 2 MAT\_277\_ADHESIVE\_CURING\_VISCOELASTIC

MAT 277's viscoelastic constitutive model is based on MAT 076 GENERAL VISCOELASTIC, and calculates the stress with rate effects by convolution integral as following,

$$\sigma_{ij} = \int_0^t G_{ijkl}(t-\tau) \frac{\partial \varepsilon_{kl}}{\partial \tau} d\tau$$

where  $G_{ijkl}(t-\tau)$  is the relaxation functions, and Prony series is used,

$$G(t,\alpha) = G_{\infty}(\alpha) + \sum_{i=1}^{N} G_{i}(\alpha)e^{-\beta_{i}t}$$

Each term in Prnoy series is curing degree  $\alpha$  dependent. Curing kinetics is modeled here with Kamal model, and follows an ordinary differential equation as below

$$\frac{d\alpha}{dt} = (K_1 + K_2 \alpha^m) (1 - \alpha)^n$$

$$K_1 = k_1 e^{\frac{-c_1}{RT}}$$
,  $K_2 = k_2 e^{\frac{-c_2}{RT}}$ ,

where  $k_1 k_2 c_1 c_2 m n$  are material constants.

A simple test case with one cubic epoxy resin element size of 1mm x 1mm x 1mm under a displacement boundary condition and heating and cooling process is conducted with material properties provided by a large carbon fiber manufacturer. At time 0, one side of the cube is stretched by 0.10 mm and fixed at that position for the rest of test. Temperature starts at 25°C at time 0, and ramps up linearly to 180°C in 20 minutes, and kept at 180°C for next 35 minutes, after which temperature ramps down linearly back to 25°C in 10 minutes. The initial curing degree is 0, and during the 60 minutes test, it cures up to 1. History plot of curing process is shown below, which matches well with experiment data.

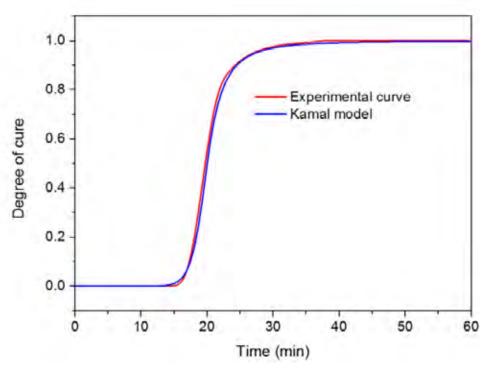



Figure 1 Curing degree of MAT277 single element test

Thermal strain and chemical strain of the cubic epoxy resin are also plotted in Figure 2 and 3.

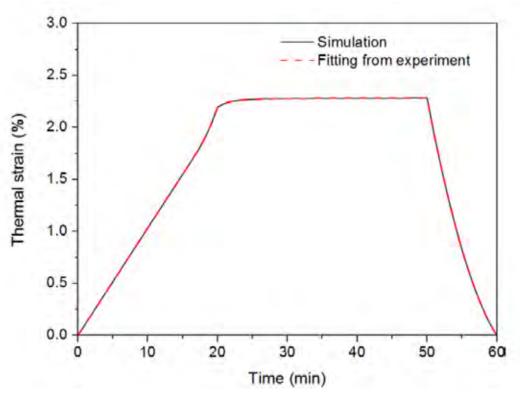



Figure 2 Thermal strain of the MAT277 single element test

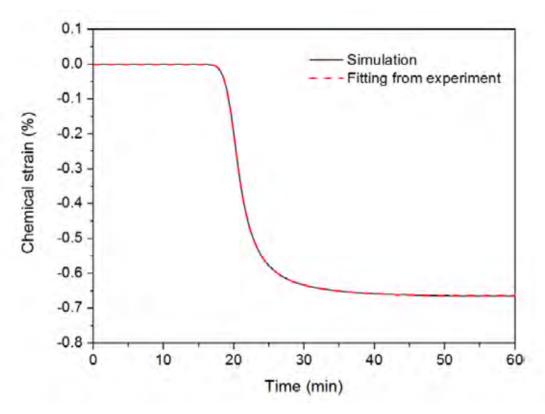



Figure 3 Chemical strain of MAT277 single element test

Stress  $\sigma_{xx}$  is compared to similar material model from another finite element commercial software, which shows great qualitative match.

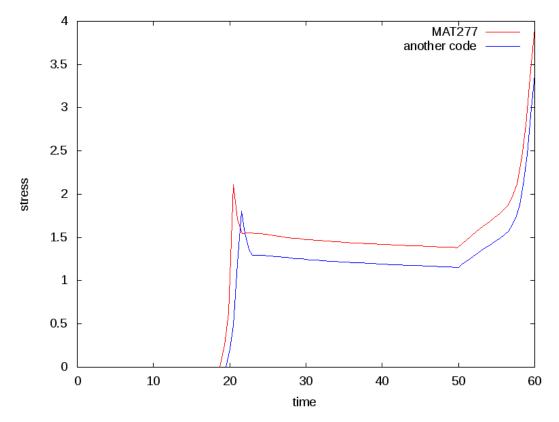



Figure 4 stress in xx direction of MAT277 single element test

With this test, we conclude that MAT 277 is a great candidate to simulate the whole process of carbon fiber compression molding. By the time of writing this paper, shell version of MAT 277 is under final development stage, which will be used in conjunction with loose fabric material model such as MAT 234 for PART\_COMPOSITE to simulate layers of carbon fiber fabric and epoxy resin in prepreg.

#### 3 MAT\_278\_CARBON\_FIBER\_MICROMECHANICS

MAT 278 include both loose fabric model and curing viscoelastic resin model in one material card. A representative volume of woven carbon fiber is shown below in Figure 5, and orientation of the fiber is described with the undulation angle  $\beta$  and the braid angle  $\theta$ . Orientation vector can be written as  $[\cos\beta\cos\theta \quad \cos\beta\sin\theta \quad \sin\theta]$ , and each time step new orientation vector can be calculated by multiplying with deformation gradient tensor.

Total strain can be transferred to principal material coordinate system of the fiber by

$$\varepsilon_{ij}^{\rm f} = Q_{ki}Q_{lj}\varepsilon_{kl},$$

and here the rotation tensor **Q** is defined as following,

$$\mathbf{Q} = \begin{bmatrix} \cos\beta\cos\theta & -\sin\theta & -\sin\beta\cos\theta \\ \cos\beta\sin\theta & \cos\theta & -\sin\beta\sin\theta \\ \sin\beta & 0 & \cos\beta \end{bmatrix}.$$

Stress calculation is then carried out for fiber in its own principal material coordinate system. And for resin, its stress and curing process is calculated in global coordinate system in the same manner as in MAT 277.

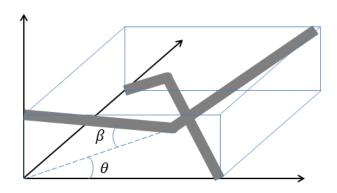



Figure 5 Fiber orientation description

Final stress will include contribution from both the epoxy resin material and the carbon fiber material, with the carbon fiber stress being transformed from its principal material coordinate system to global coordinate system by

$$\sigma_{ij}^{\mathsf{g}} = Q_{ik} Q_{jl} \sigma_{kl}.$$

A single element test was conducted with same loading condition as the single element test for MAT 277, with a very soft material property for the fiber. During the test, curing degree, thermal strain and chemical strain of the resin material all match will MAT 277 test result. The braid angle starts at 45°, which is half of 90° given that fibers are perpendicular to each other at the beginning of the test, decreases to just above 41°, and then increases, flats out, and decreases again as the epoxy resin material cures. History plot of the braid angle is given in Figure 6.

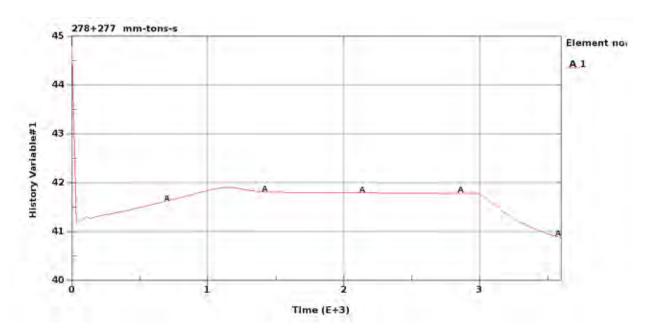



Figure 6 The braid angle of fiber during tension and curing test

The undulation angle starts at 6°, and follows a similar pattern during tension and curing process, which is shown in Figure 7.

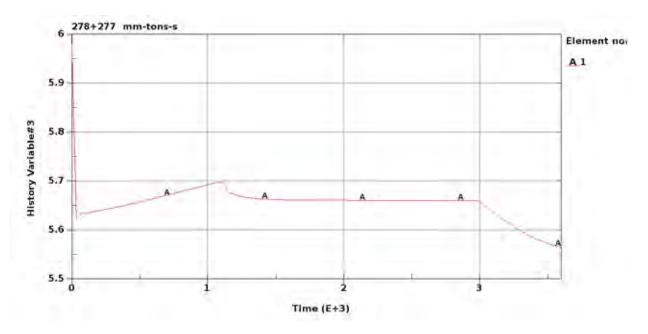



Figure 7 The undulation angle during tension and curing test

Stress in XX direction is shown in Figure 8, which is very similar to the test result in MAT 277 due to the fact that very soft material property is used for the fiber material.

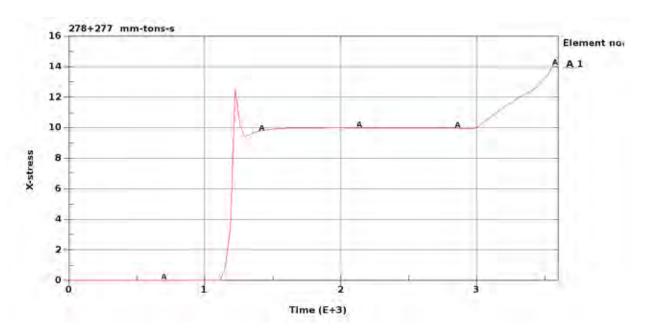



Figure 8 Stress in XX direction during tension and curing test

#### 4 Conclusions

It is demonstrated that new material models in LS-DYNA are capable of predicting the curing kinetics, stress response of epoxy resin during tension and heating/cooling loading condition very well, and can also capture even very small reorientation of the fiber during the test process. The two material models show great potential for a full simulation of a complete compression molding process of carbon fiber composite.

#### References

- [1] LS-DYNA KEYWORD USER MANUAL
- [2] LS-DYNA THEORY MANUAL
- [3] LS-DYNA MATERIAL MANUAL