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Summary:

The main purpose of global sensitivity analysis is to identify the most significant model parameters affect-
ing a specific model response. This helps engineers to improve the model understanding and provides
valueable information to reduce the computational effort in structural optimization. A structural optimiza-
tion is characterized by a set of design parameters, constraints and objective functions formulated on
basis of model responses. The computational effort of a structural optimization depends besides the
complexity of the computational model heavily on the number of design parameters. However in many
cases an objective function is dominated only by a few design parameters. Results of global sensitivity
analysis may be used to select the most significant design parameters from a number of potential can-
didates and thereby reduce the optimization problem by the insignificant ones. In this paper different
sensitivity measures and associated algorithms are evaluated with respect to their capabilities and com-
putational costs. In particular the variance-based approach after Sobol is compared with the correlation
analysis, the linear and quadratic ANOVA approaches, and the FAST approach. This is done using a
comprehensible academic example as well as an optimization problem from engineering practice.
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1 Introduction

Goal of the engineering design process is an optimal structural design. Each engineering design process
is thus an optimization problem. Optimization problems are characterized by a set of design parameters,
constraints and objective functions formulated on basis of model responses.Structural optimization of
moderate to complex computational models is costly and often requires additionally effort due to the high
number of design parameters that might be considered in the design process. Responses can depend
on all design parameters, but often the significance onto the variation of the structural responses differs
greatly. In many cases a structural response is dominated by only a few significant design parameters.
For improvement in efficiency of solving the optimization problem and the engineering design process
respectively, the optimization problem may be reduced by insignificant input variables, i.e. design param-
eters which do not have a part in the variation of the regarded structural responses. The identification of
significant and insignificant input variables succeeds by means of global sensitivity analysis. Sensitivity
analysis is the study of how the variation in the output of a model (numerical or otherwise) can be appor-
tioned, qualitatively or quantitatively, to different sources of variation [4]. Objective of a global sensitivity
analysis ist thus the identification of significant and insignificant design parameters and the reduction
of the input dimension (number of design variables) of the optimization problem. Furthermore global
sensitivity analysis helps thus to find mistakes in the model and to improve the model understanding.

An adequate global sensitivity analysis approach for computation of sensitivities for general (nonlinear)
computational models are the Sobol’ indices. The Sobol’s variance-based approach, the Sobol’ indices,
has received much attention in literature in the last years since they provide accurate sensitivity informa-
tion for most computational models [6]. In contrast to that, well-established global sensitivity analysis
approaches like the correlation analysis or the linear ANOVA require linear or weak nonlinear monotonic
models. Also the quadratic ANOVA is based on a quadratic approximation of the structural responses.
However the FAST approach is independent from the model behavior.

In this paper the global sensitivity analysis approaches mentioned above are evaluated and compared
with respect to their capabilities and computational costs.

2 Global sensitivity analysis

2.1 Regression-based correlation analysis

Correlation, (often measured as a correlation coefficient), indicates the strength and direction of a linear
relationship between two random variables. A number of different coefficients are used for different
situations. The best known is the Pearson product-moment correlation coefficient, which is obtained by
dividing the covariance of the two variables by the product of their standard deviations. The correlation
coefficient ρX ,Y between two random variables X and Y is defined as the Pearson correlation coefficient

ρX ,Y =
E(XY )−E(X)E(Y )√

E(X2)−E2(X)
√

E(Y 2)−E2(Y )
(1)

where E(·) denotes the expected value. For a result of a numerical experiment e.g. obtained through
a Monte Carlo Simulation, the Pearson product-moment correlation coefficient can be used to estimate
the correlation between X and Y . The Pearson correlation coefficient is then the best estimate of the
correlation of X and Y . The Pearson correlation coefficient is written:

rx,y = ∑
N
i=1(xi− x)(yi− y)√

∑
N
i=1(xi− x)2 ∑

N
i=1(yi− y)2

(2)

where x is the mean (average) of the xi values and y is the mean of the yi values. The values of the
correlation coefficients from Eqs. (1) and (2) are located in the interval [−1,1], where values close to 0
indicate a weak (linear) relationship and values close to -1/1 a strong (linear) relationship between the
investigated random variables X and Y .
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Consider a single response variable Y dependent upon a number of variables X = (X1,X2, ...,Xn), then
the correlation coefficient may thus be used as sensitivity measure

Si = ρXi,Y (3)

The correlation is a very popular and powerful measure to summarize linear relationships between vari-
ables but in the case of outliers or (weak) nonlinearity it may lead to wrong conclusions. Therefore a
correlation analysis does not replace the individual examination of the data (e.g. through anthill plots).

The Pearson correlation coefficient is associated with the regression coefficient obtained by linear regres-
sion analysis. Regression analysis also indicates the strength and direction of a relationship between
two random variables X and Y . At this one random variable is defined to be dependent and modeled as
a function of the independent variable, corresponding parameters, and a random error term. In linear
regression for modeling n data points there is one independent variable xi, two parameters a and b, and
one error term εi.

yi = a+bxi + εi

The parameters a and b are estimated by using the least squares method.

b̂ = ∑
N
i=1(xi− x)(yi− y)

∑
N
i=1(xi− x)2

(4)

â = y− b̂x (5)

The interrelation between linear regression and the Pearson correlation coefficient is given by

b̂ = rx,y
sy

sx
(6)

where sx and sy are the standard deviations of the respective data.

The proportion of variability in the investigated data accounted for by the linear regression is defined by
the coefficient of determination R2

x,y. The variability of the data is measured through the residuals

ûi = yi− (â+ b̂xi) (7)

The coefficient of determination R2
x,y is thus defined by

R2
x,y = 1− ∑

N
i=1 û2

i

∑
N
i=1(yi− y)2

(8)

In the case of linear regression, R2
x,y is the square of the Pearson correlation coefficient rx,y.

2.2 Variance-based approaches

The models under investigation are described by a function Y = f (X), where X = (X1,X2, ...,Xn) is
the random input vector consisting of n random variables (i.e. structural parameters) and where Y =
(Y1,Y2, ...,Ym) denotes the random output vector consisting of random variables (i.e. structural responses).
It is possible to decompose Y = f (X) into summands of increasing dimension.

f (X) = f0 +
n

∑
i=1

fi(Xi)+ ∑
1≤i< j≤n

fi j(Xi,X j)+ ...+ f1,2,...,n(X1, ...,Xn) (9)
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Each random model response Yj ( j = 1,2, ...,m) is characterized by its variance V j. According to Eq. (9)
it is possible to decompose each variance V j into partial variances associated with the single random
input variables X1,X2, ...,Xn as follows:

V j =
n

∑
i=1

V j
i + ∑

1≤i<k≤n
V j

i,k + ...+V j
1,2,...,n (10)

and to relate each partial variance to one sensitivity measure

S j
i1,...,is =

V j
i1,...,is

V j with 1 ≤ i1 < ...is ≤ n, s = 1,2, ...,n (11)

Each of the sensitivity measures S j
i1,...,is describes which amount of each variance V j is caused due to

the randomness of the associated random input variables and their mapping onto the output variables.
As special case the sensitivity measures S j

i describing the sole influence of a single input variable Xi

are called main effects. On the other hand the sensitivity measures S j
i1,...,is describing the influence of

combinations of input variables are called interaction effects.

In practice, all partial sensitivity measures involving the single input variable Xi (i = 1,2, ...,n) are summed
up to the total sensitivity measure S j

Ti
in order to evaluate the total effect of Xi. The total sensitivity

measures consider thus interaction among the input variables. In order to quantify which amount of
each variance V j is caused due to a single input variable Xi the corresponding total sensitivity measure
S j

Ti
may be normalized according to Eq. (12).

normS j
Ti

=
S j

Ti

∑
n
k=1 S j

Tk

(12)

That is, input variable Xi has a share in variance V j of normS j
Ti

.

For computationally demanding models, e.g. finite element models in engineering mechanics, efficient
meta models should be applied. Besides polynomial response surface approximations, Neural and
Radial Basis Function networks and Krigging approximations may also be used as response surfaces
[5]. In this case, an additional amount of variance due to the approximation in dependency of the quality
of the response surface appears. To take this additional variance into consideration the variance of
the discrepancies between the exact functional response and the response surface at the experimental
points is computed and denoted by V j

unex. The normalized total sensitivity measure S j
Ti

is thus modified
according to Eq. (13), where V j and S j

Ti
are computed only using the response surface.

normS j
Ti

=

S j
Ti

∑
n
k=1 S j

Tk

V j

V j +V j
unex

(13)

In the following three different algorithms for the numerical computation of the partial variances V j
i1,...,is

and thus the sensitivity measures S j
i1,...,is are presented and compared.

2.2.1 Linear and quadratic ANOVA

The linear and quadratic ANOVA (ANalysis Of VAriance) approach according to [5] is explained in the
following. The approach is based on response surface methodology, that is, a design surface is fitted
to predetermined response values using regression analysis. Least squares approximation is used
for this purpose. Consider a single response variable Y dependent upon a number of variables X =
(X1,X2, ...,Xn). The exact functional relationship between these quantities is

Y = f (X) (14)
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The exact functional relationship is now approximated (e.g. polynomial approximation) as

f (X) ≈ f ∗(X) (15)

The approximating function f ∗(X) is assumed to be a summation of basis functions

f ∗(X) =
L

∑
i=1

aiφi(X) (16)

where L is the number of basis functions φi(·) used to approximate the model. The constants a =
(a1,a2, ...,aL)T have to be determined in order to minimize the sum of square error

P

∑
p=1

{
[ f (X p)− f ∗(X p)]

2} =
P

∑
p=1

{
[ f (X p)−

L

∑
i=1

aiφi(X p)]
2

}
(17)

P is the number of experimental points and f (X p) is the exact functional response at the experimental
points X p. The numerical computation ist presented in the following.

The P experimental points are arrayed in the matrix

X =


X11 . . . X1i . . . X1N
...

...
...

X j1 . . . X ji . . . X jN
...

...
...

XP1 . . . XPi . . . XPN

 with i = 1 . . .n and j = 1 . . .P (18)

and the mean values

E(X〈i〉) =
P

∑
j=1

X〈i〉, j (19)

and variances

V (X〈i〉) =
P

∑
j=1

[
(X〈i〉, j −E(X〈i〉))

2 · 1
P

]
(20)

are computed. With

X̂ =


1 X11 . . . X1i . . . X1N
...

...
...

...
1 X j1 . . . X ji . . . X jN
...

...
...

...
1 XP1 . . . XPi . . . XPN

 and Y =



f (X1)
...

f (X j)
...

f (XP)

 (21)

the constants a = (a1,a2, ...,aL)T of a linear approximation (that is linear ANOVA) may be computed by

a = (X̂TX̂)−1X̂TY (22)

The partial variances associated with each basis function of the linear ANOVA are then given by

Vi = a2
i ·V (X〈i〉) with i = 1 . . .L (23)
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The quadratic ANOVA is based on a quadratic approximation of the response variable Y and quadratic
basis functions respectively. The parameter matrix given by Eq. (21) changes thus to

X̂ =



1 X11 . . . X1N . . . X1l ·X1k . . . (X11)2 . . . (X1N)2

...
...

...
...

...
...

1 X j1 . . . X jN . . . X jl ·X jk . . . (X j1)2 . . . (X jN)2

...
...

...
...

...
...

1 XP1 . . . XPN . . . XPl ·XPk . . . (XP1)2 . . . (XPN)2

 (24)

The computation of the partial variances differs slightly in that case and is explained in detail in [5].

2.2.2 Fourier Amplitude Sensitivity Test (FAST)

The Fourier Amplitude Sensitivity Test according to [1] is based on the transformation of the response
variable Y dependent upon a number of variables X = (X1,X2, ...,Xn) into a onedimensional space which
is described by the variable s. This section just provides a short introduction. In the first step each input
variable Xi is associated with a characteristic integer frequency ωi. None of the chosen frequencies may
be represented by a linear combination with integer coefficients ri of the other frequencies.

∑
i

riωi 6= 0 with −∞ ≤ ri ≤+∞ (25)

Furthermore the number M of considered harmonics has to be chosen and P discrete points s j ( j =
1, ...,P), which have to be analysed in the onedimensional space, must be defined.

s j =−π +
π

P
+

2π

P
( j−1) (26)

In the next step realizations of each input variable Xi are computed according to their inverse probability
distribution functions F−1

i at the discrete points s j in the onedimensional space and arrayed in the matrix
X̂.

X̂ ji = F−1
i

[
1
2

+
1
π

arcsin(sin(ωis j))
]

(27)

The partial variances associated with each input variable are then given by

Vi =
M

∑
m=1

Λmωi (28)

with

Λmωi =
1
2
·
[
(Amωi

)2 +(Bmωi
)2

]
(29)

the Fourier coeficients

Amωi =
2
P
·

P

∑
j=1

Y j cos(m ·ωi · s j) (30)

Bmωi =
2
P
·

P

∑
j=1

Y j sin(m ·ωi · s j) (31)

and

Y j = f (X̂〈i〉) j (32)
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2.2.3 Sobol’ indices

The Sobol’ indices are practically computed using Monte Carlo simulation [6]. Using Monte Carlo simu-
lation, the partial variances associated with each input variable Xi are computed as

Vi =
1

Nsim

Nsim

∑
m=1

f (x(1)
m ) f (x(2)

(∼i)m, x(1)
im )− f̂ 2

0 (33)

with the mean value

f̂0 =
1

Nsim

Nsim

∑
m=1

f (xm) (34)

and Nsim the number of simulations. The superscripts (1) and (2) in Eq. 33 indicate that two different
simulations are generated and mixed in such a way that the model response f (x(2)

(∼i)m, x(1)
im ) is computed

using the input vector (x(2)
1m ,x(2)

2m , ...,x(2)
(i−1)m,x(1)

im ,x(2)
(i+1)m, ...,x(2)

nm).

The higher-order partial variances are computed analog as

Vi j =
1

Nsim

Nsim

∑
m=1

f (x(1)
m ) f (x(2)

(∼i j)m, x(1)
i jm)− f̂ 2

0 (35)

In the same way the partial variances Vi jk, ... are computed.

The partial variance considering the total effect of an input variable Xi may be computed as

V∼i =
1

Nsim

Nsim

∑
m=1

f (x(1)
m ) f (x(1)

∼im,x(2)
im )− f̂ 2

0 (36)

2.3 Comparison of the approaches

In the following the Ishigami-function [3]

Y3 = f3(X1,X2,X3) = sinX1 +asin2X2 +bX4
3 sinX1 (37)

is investigated. The input variables are uniformly distributed in the interval [−π,π]. The example is
carried out using the numerical values a = 7 and b = 0.1. The plot (X3 = 1.0) of this nonlinear and
non-monotonic function is shown in Fig. 1.
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Fig. 1: Function plot of the Ishigami function (X3 = 1.0)

The results of the computation of the regression-based correlation coefficient, the variance-based linear
and quadratic ANOVA, and the Sobol’ indices are gathered in Tab. 1.
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Tab. 1: Results of the global sensitivity analysis

correlation linear ANOVA quadratic ANOVA1 FAST Sobol analytic2

S1 0.44 0.19 0.11 0.314 0.314 0.314
S2 0 0 0.42 0.444 0.442 0.442
S3 0 0 0.19 0 0 0
S12 – – 0.01 – 0 0
S13 – – 0.25 – 0.244 0.244
S23 – – 0.03 – 0 0
S123 – – – – 0 0

normST1 – – 0.28 – 0.45 0.45

normST2 – – 0.35 – 0.35 0.35

normST3 – – 0.36 – 0.2 0.2
1LS–OPT results, normalized
2according to Eq. (10)

It is observed that the influences of X2 and X3 are negated by the correlation analysis as well as by
the linear ANOVA. The results of the quadratic ANOVA depend on the quality of the polynomial approx-
imation. Here the contributions of the input variable X2 and the interacting input variables (X1,X3) are
detected, however the significance of X1 is negated. The total effect of X1 is thus underestimated by the
quadratic ANOVA. The FAST may compute the main effects correctly but it yields no information about
interaction effects. Furthermore it may lead to differing results in higher input dimensions because of
the frequencies and number of harmonics to be chosen. Only the Sobol’s approach corresponds with
the analytic solution and yields information about the main effects, the interaction effects, and the total
effects.

As a conclusion, this academic example shows the potential of the global sensitivity analysis by the
Sobol’ indices to investigate the dependencies of nonlinear functions with respect to the input parame-
ters. Indeed all three input variables are important, which the common correlation analysis, the linear
ANOVA and the FAST are not able to detect. Due to the limited capacity of the polynomial approximation
used by the quadratic ANOVA the associated ranking of the input variables is differing to the analytic
solution.

3 Application

Structural optimization within the engineering design process is demonstrated by means of the optimiza-
tion of the crash behavior of a car model at front crash against a stonewall [2].

Fig. 2: Front crash of a car model against a stonewall
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The design parameters are lb1, lb2, lb3, c1, c2, and c3, that is, the sheet thickness of the longitudinal
and crossmembers according to Fig. 3.

Fig. 3: Design parameters

The possible ranges of the design parameters are given in Tab. 2.

Tab. 2: Design parameters
Parameter Name Minimum [mm] Maximum [mm]

longitudinal 1 lb1 1.0 1.5
longitudinal 2 lb2 1.3 1.8
longitudinal 3 lb3 0.8 1.3

crossmember 1 c1 0.8 1.3
crossmember 2 c2 0.8 1.3
crossmember 3 c3 1.0 1.5

As constraint of the optimization problem the total mass of the car is limited to mmax = 923.92kg.

The considered response is the maximum intrusion of the chassis (MaxIntru2) into the passenger com-
partment as highlighted in Fig. 4.

Fig. 4: Evaluated response of the car model

The objective function z of the optimization problem may thus be formulated as

z = max
t

[(
x1(0)+ x2(0)

2
− x3(0)+ x4(0)

2

)
−

(
x1(t)+ x2(t)

2
− x3(t)+ x4(t)

2

)]
→ min

with xi(t) are the displacement functions in x direction in of the regarded nodes i = 1,2,3,4 as highlighted
in Fig. 4. Because of the time dependence of the displacement functions the maximum of the relative
displacement is evaluated and minimized.
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There is no information about the probability distribution functions (pdf’s) of the design parameters. In
that case, a straightforward approach of a uniform probability distribution of the design parameters is
assumed. It has to be kept in mind that the choice of the probability distribution functions influence the
results of the sensitivity analysis significantly.

The global sensitivity analysis after Sobol was carried out with the software tool D-SPEX [7] using 250
experimental points and a radial basis function neural network as metamodel provided by LS-OPT. The
Sobol’ indices are given in Tab. 3.

Tab. 3: Results of the global sensitivity analysis after Sobol
Parameter Si = main effect normSTi = total effect

lb1 0.16 0.45
lb2 0 0.09
lb3 0 0.02
c1 0.10 0.25
c2 0.24 0.13
c3 0 0.04

residuals 0.07 0.02

The results of the sensitivity analysis may also be visualized with D-SPEX, Fig. 5.

Fig. 5: Plot of normalized total Sobol’ indices normSTi

In the Sobol’ indices plots the length of each section in one stacked bar represents the contribution of the
specific parameter (lb1, lb2, lb3, c1, c2, c3) to the total variance of the respective result (right chart).
The left chart is an alternative depiction and illustrates the main effect and the total effect of the specific
parameter to the respective result.

The Sobol’ indices show that the sheet thicknesses of lb1, c1, and c2 are significant and the sheet
thicknesses of lb2, lb3, and c3 are insignificant with respect to the objective function and the intrusion
of the chassis respectively. The objective function is thus reduced by the insignificant parameters, that
is deterministic values are assigned a priori, and the optimization problem is solved considering only the
significant ones.
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The optimization was carried out with LS-OPT. The results of the reduced optimization are given in
Tab. 4 and compared with the results of the entire optimization. Compared with the results of the
entire optimization a proper approximation of the global optimum has been found while reducing the
computational effort substantially.

Tab. 4: Comparison – reduced and entire optimization
Reduced [mm] Entire [mm]

lb1 1.0 1.0
lb2 1.81 1.3
lb3 0.81 0.8
c1 1.3 1.3
c2 1.1 1.2
c3 1.01 1.4

maximum intrusion 14.7 12.7
1assigned deterministic values

4 Conclusion

In this paper the Sobol’ indices as a suitable global sensitivity analysis approach within structural opti-
mization problems are presented and demonstrated by means of analytical and practical examples. The
Sobol’ indices are sensitivity measures for arbitrary (nonlinear) computational models. They quantify
which amount of the variance of result variables is caused due to a single input variable or combinations
thereof and may thus identify significant and insignificant input variables of structural optimization prob-
lems. Three further global sensitivity analysis approaches are presented with particular consideration
of nonlinearity of the underlying computational model. The correlation analysis reflects the strength and
direction of a linear relationship, but not any aspects of nonlinear relationships. The same applies to
the linear ANOVA. The quadratic ANOVA may take nonlinearities into account, but restricted in terms
of a quadratic approximation. The FAST considers the main effects of nonlinear non-monotonic prob-
lems correctly but does not yield information about interaction effects and may lead to differing results in
higher input dimensions.
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