

A Comparison of recent Damage and Failure Models for Steel Materials in Crashworthiness Application in **LS-DYNA**

Dr. André Haufe Dynamore GmbH

Frieder Neukamm, Dr. Markus Feucht Daimler AG

Paul DuBois Consultant

Dr. Thomas Borvall ERAB

Bundesministerium für Bildung und Ferschung

Technological challenges in the automotive industry

Technological challenges in the automotive industry

Motivation Lightweight steel/aluminium design! Can we predict failure modes (brittle, ductile, time delayed)? ∠ 22MnB5 200 400 600 800 1000 1200 1400 Zugfestigkeit R_m /MPa technische Spannung [kN/mm^2] CP800 ۲. TWIP **TRIP800** ZE340 Aural

technische Dehnung [-]

Motivation Material behavior dependent on local history of loading

Institut Werkstoffmechanik

5

Material models along the process chain

Von Mises with damage

Von Mises plasticity with damage in LS-DYNA (MAT_81/82)

Enhancement of *MAT_PIECEWISE_LINEAR_PLASTICITY(#024) with damage. Instead of abrupt failure (#024) continuous softening by damage formulation (#081/082)

Elasto - Visco - Plasticity with isotropic Hardening and Damage: No regularisation & damage/failure independent of state of stress!!

The Gurson model

The Gurson-model in LS-DYNA

The yield function is given as

$$\Phi(\boldsymbol{\sigma},\sigma_{M},f) = \frac{\sigma_{e}^{2}}{\sigma_{M}^{2}} + 2q_{1}f^{*}\cosh\left(\frac{q_{2}tr\boldsymbol{\sigma}}{2\sigma_{M}}\right) - 1 - \left(q_{1}f^{*}\right)^{2} = 0$$

 The effective void volume fraction is defined according to

$$f^{*}(f) = \begin{cases} f & f \le f_{c} \\ f_{c} + \frac{1/q_{1} - f_{c}}{f_{F} - f_{c}}(f - f_{c}) & f > f_{c} \end{cases}$$

- For the matrix material associative von Mises plasticity is assumed for the undamaged state.
- Yield is NOT isochoric though!
- q₁ and q₂ are free parameters of the model to fit the yield surface to experimental data.
- *f_c* is the critical void volume fraction above which the voids start to combine and grow.
- Failure is being initiated at $f^*(f_F) = \frac{1}{2}$

The Gurson-model in LS-DYNA

 \mathcal{E}_{M}^{pl}

The growth of the void volume is $\dot{f} = \dot{f}_N + \dot{f}_G$ and can be considered as damage. Nucleation of new voids intension: $\dot{f}_N = A\dot{\varepsilon}_M^{pl}$ where $A = \frac{f_N}{s_N \sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{\varepsilon_M^{pl} - \varepsilon_N}{s_N}\right)^2\right)$ $A = \frac{\varepsilon_N}{s_N \sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{\varepsilon_M^{pl} - \varepsilon_N}{s_N}\right)^2\right)$

 $S_N =$ std. deviation

Growth of existing voids:
$$\dot{f}_G = (1 - f)\dot{\epsilon}_{kk}^{pl}$$

where
$$f = \frac{V_{voids}}{V_{voids} + V_{matix}}$$

 \mathcal{E}_N

 S_N

Gurson enhanced by JC-failure model

- Void growth in the standard Gurson model is triggered by volumetric straining (see also VGTYP for differences between tension and compression for nucleation of new voids).
- Hence for **pure shear** loading softening and subsequent failure is not taking place. The Johnson-Cook enhancement adds a failure criterion that is invoked between two defined triaxiality values and triggers **sudden** failure via element erosion.
- The definition of triaxiality play a major role: $\lambda_{tri} = \frac{\sigma_{ii}}{3\sigma_{vi}}$
- Definition of failure strain $\varepsilon_f = [D_1 + D_2 \exp(D_3 \lambda_{tri})](1 + D_4 \ln \dot{\varepsilon})\Lambda$

where $L_1 < \lambda_{tri} < L_2$ with L_1 and L_2 being user defined lower and upper triaxiality bounds

and $D_1 - D_4$ are user defined Johnson-Cook failure parameters.

- Λ is the user defined curve LCDAM that defines a scalar value vs. element length and hence acts a regularisation means.
- Failure (i. e. element erosion) is initiated iff:

The Gurson_JC-model Interaction between submodels by definition of L1 and L2

Remember: L1 and L2 are triaxiality values. Triaxilality is defined as

$$\lambda_{tri} = \frac{\sigma_{ii}}{3\sigma_{vM}}$$

Hence positive values define tension, negative define compression.

The following holds for the JC-corridor:

 $\begin{array}{ll} \lambda_{tri} < L2 & \mbox{Only Gurson is active} \\ L2 \leq \lambda_{tri} \leq L1 & \mbox{Gurson and JC-criteria is active} \\ L1 < \lambda_{tri} & \mbox{Only Gurson is active} \end{array}$

Produceability to Serviceability

Closing the process chain

Different ways to realize a consistent modeling

One Material Model for Forming and Crash Simulation

- Requirements for Forming Simulations: Anisotropy, Exact Description of Yield Locus, Kinematic Hardening, etc.
- Requirements for Crash Simulation: Dynamic Material Behavior, Failure Prediction, Energy Absorption, Robust Formulation
- Leads to very complex model

Modular Concept for the Description of Plasticity and Failure

- Plasticity and Failure Model are treated separately
- Existing Material Models are kept unaltered
- Consistent modeling through the use of one damage model for forming and crash simulation

*MAT_ADD....(damage)

Produceability to Serviceability

MOBE

17

Produceability to Serviceability: Modular Concept

Modular Concept:

- •Proven material models for both disciplines are retained
- •Use of one continuous damage model for both

Produceability to Serviceability: Modular Concept Current status in 971R5

Ebelsheiser, Feucht & Neukamm [2008] Neukamm, Feucht, DuBois & Haufe [2008-2010]

GISSMO - a short description

Ductile damage and failure

GISSMO – a short description Engineering approach for instability failure

REMARK: Failure criterion for plane stress and 3D solids

GISSMO – a short description

Inherent mesh-size dependency of results in the post-critical region Simulations of tensile test specimen with different mesh sizes

GISSMO – a short description Generalized Incremental Stress State dependent damage MOdel

GISSMO

Identification of damage parameters: Range of experiments and simulations

To be considered: 8 Specimen geometries 5 Discretisations

Institut Werkstoffmechanik

GISSMO Equivalent plastic strain vs. triaxiality

Gurson vs. GISSMO – "regularized" Regularization of element size dependency

Example: tension rod

Example: Arcan shear test

GISSMO

Deep-draw simulation of cross-die using GISSMO

DYNA 32

Process chain with GISSMO

*MAT_24 (Mises) *MAT_ADD_EROSION

Summary

- Features of GISSMO:
 - The use of existing material models and respective parameters
 - The constitutive model and damage formulation are treated separately
 - Allows for the calculation of pre-damage for forming and crashworthiness simulations
- Characterization of materials requires a variety of tests
- Automatic method for identification of parameters is to be developed
- Offers features for a comprehensive treatment of damage in forming simulations
- Available in LS-DYNA V9.71 R5
- Verification und validation of concept are under way

Threepart failure concept

Damage and failure concept

New implementation of a threepart failure model

- By using the basic software architecture available since the implementation of GISSMO another client driven threepart failure and damage model has been implemented.
- The model will be available in *MAT_ADD_EROSION starting with LS-DYNA V971 R5.
- The concept allows (theoretically) the combination with any available constitutive model in LS-DYNA. Hence the same idea for closing the gap between forming and crash simulations apply.
- The individual criteria deliver strain rate dependent failure accumulation that is being input in tabulated from.
- Using the accumulated data in subsequent simulations (multi-stage) simulations, the well established method of using the DYNAIN-files is chosen. Hence
 *INCLUDE STAMPED PART will be able to handle the new option.

Basis material model: e.g. MAT_24

Damage and failure concept

- Three individual criteria may predict failure in thin sheet metal.
- Post-critical behavior is defined by allowance of an additional displacement in each element.
- The element is deleted if a defined number of integrations points is flagged as "failed".

Ductile failure	Shear failure	Instability criteria
For the ductile initiation option a function $\mathcal{E}_D^p = \mathcal{E}_D^p(\eta, \dot{\mathcal{E}}^p)$ represents the plastic strain at onset of damage (P1). This is a function of stress triaxiality defined as $\eta = -p / q$ with <i>p</i> being the pressure and <i>q</i> the von Mises equivalent stress. Optionally this can be defined as a table with the second dependency being on the effective plastic strain rate $\dot{\mathcal{E}}^p$. The damage initiation history variable evolves according to $\omega_D = \int_0^{\mathcal{E}_D^p} \frac{d\mathcal{E}^p}{\mathcal{E}_D^p}$	For the shear initiation option a function $\varepsilon_D^p = \varepsilon_D^p(\theta, \dot{\varepsilon}^p)$ represents the plastic strain at onset of damage (P1). This is a function of a shear stress function defined as $\theta = (q + k_S p) / \tau$ with <i>p</i> being the pressure, <i>q</i> the von Mises equivalent stress and τ the maximum shear stress defined as a function of the principal stress values $\tau = (\sigma_{major} - \sigma_{minor}) / 2$ Introduced here is also the pressure influence parameter k _S (P2). Optionally this can be defined as a table with the second dependency being on the effective plastic strain rate $\dot{\varepsilon}^p$. The damage initiation history variable evolves according to $\omega_D = \int_0^{\varepsilon_D^p} \frac{d\varepsilon^p}{\varepsilon_D^p}$	For the MSFLD initiation option a function $\mathcal{E}_D^p = \mathcal{E}_D^p(\alpha, \dot{\mathcal{E}}^p)$ represents the plastic strain at onset of damage. This is a function of the ratio of principal plastic strain rates defined as $\alpha = \dot{\mathcal{E}}_{minor}^p / \dot{\mathcal{E}}_{major}^p$ The MSFLD criterion is only relevant for shells and the principal strains should be interpreted as the in-plane principal strains. The damage initiation history variable evolves according to: $\omega_D = \max_{r \leq T} \frac{\mathcal{E}_D^p}{\mathcal{E}_D^p}$

Idea of scalar damage

 $D = \frac{A_i}{d}$

with $0.0 \le D \le 1.0$

Failure mechanism in sheet metal deformation

Thank you for your attention!

Dynamore GmbH Industriestraße 2 70565 Stuttgart Germany http://www.dynamore.de

