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Technological challenges in the automotive industry
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Motivation
Lightweight steel/aluminium design!
Can we predict failure modes (brittle, ductile, time delayed)? 

22MnB5

CP800

TRIP800

ZE340

Aural

TWIP
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Micro-alloyed steel Hot-formed steel

Motivation
Material behavior dependent on local history of loading
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Typical models: von Mises, Gurson, Gurson-JC, …

Typical models: Barlat89, Barlat2000, Hill48, Yoshida, …

Plastic Strain

Thickness

Damage

Transfer of Variables

Crash Simulation

Forming Simulation

� Correct description of yield locus

� Anisotropic yield locus:

� Energy absorption

� Prediction of structural folding patterns

� Strain rate dependent models (including damage) 

Material models along the process chain
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Von Mises with damage
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Von Mises plasticity with damage in LS-DYNA (MAT_81/82)
Enhancement of *MAT_PIECEWISE_LINEAR_PLASTICITY(#024) with damage.
Instead of abrupt failure (#024) continuous softening by damage formulation (#081/082)

Elasto - Visco - Plasticity with isotropic Hardening and Damage: 
No regularisation & damage/failure independent of state of stress!!

MAT_081:damage, linear or nonlinear softening

EPPF EPPFR

linear softening

nonlinear

softening

MAT_024: only abrupt failure

FAIL
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The Gurson model
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The Gurson-model in LS-DYNA 
� The yield function is given as
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� The effective void volume fraction is defined 

according to

σ e = equivalent von Mises stress

σ M = yield stress (matrix)

σ = stress tensor

cf = critical void volume fraction

� For the matrix material associative von Mises

plasticity is assumed for the undamaged state.

� Yield is NOT isochoric though!

� q1 and q2 are free parameters of the model to fit 

the yield surface to experimental data.

� fc is the critical void volume fraction above which 

the voids start to combine and grow.

� Failure is being initiated at =*

1

1
( )Ff f

q

Undamaged Gurson yield surface
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The Gurson-model in LS-DYNA 
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Damaged Gurson yield surface 
(needs in hydrostatic loading)

Ns = std. deviation 

ε
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Typical Gurson stress-strain curve 
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Gurson enhanced by JC-failure model

� Void growth in the standard Gurson model is triggered by volumetric straining (see also 
VGTYP for differences between tension and compression for nucleation of new voids). 

� Hence for pure shear loading softening and subsequent failure is not taking place. The 
Johnson-Cook enhancement adds a failure criterion that is invoked between two defined 
triaxiality values and triggers sudden failure via element erosion. 
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� The definition of triaxiality play a major role:

� Definition of failure strain 

where with L1 and L2 being user defined lower and upper triaxiality bounds

and D1 – D4 are user defined Johnson-Cook failure parameters.

Λ is the user defined curve LCDAM that defines a 
scalar value vs. element length and hence acts 
a regularisation means.

� Failure (i. e. element erosion) is initiated iff:
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The Gurson_JC-model
Interaction between submodels by definition of L1 and L2

Remember: L1 and L2 are triaxiality values. 
Triaxilality is defined as

λtri

Hence positive values define tension,
negative define compression. 

The following holds for the JC-corridor:

σ
λ

σ
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3
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λ < 2tri L Only Gurson is active

λ≤ ≤2 1triL L

λ<1 triL

Gurson and JC-criteria is active

Only Gurson is active

L2 L1

Gurson GursonGurson & JC
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Produceability to Serviceability
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???

Forming simulation

Closing the process chain

� v. Mises or Gurson model

� Strain rate dependency

� Isotropic hardening

� Damage evolution

� Failure models

(damage variable necessary!!)

IIσ

Iσ

IIIσ

� Hill based models

� Anisotropiy of yield surface

� Kinematic/Isotropic hardening 

� Failure by FLD 

(post-processing)

� No computation of damage 

IIσ

IσIIIσ

IIσ

Iσ

IIIσ

Crash simulation
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Different ways to realize a consistent modeling

One Material Model for Forming 
and Crash Simulation

� Requirements for Forming 

Simulations: Anisotropy, Exact 

Description of Yield Locus, 

Kinematic Hardening, etc. 

� Requirements for Crash 

Simulation: Dynamic Material 

Behavior, Failure Prediction, 

Energy Absorption, Robust 

Formulation

� Leads to very complex model

Modular Concept for the 
Description of Plasticity and 
Failure

� Plasticity and Failure Model are 

treated separately

� Existing Material Models are kept 

unaltered

� Consistent modeling through the 

use of one damage model for 

forming and crash simulation

*MAT_ADD….(damage)
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Produceability to Serviceability

Gurson

Barlat Gurson

Forming simulation                                              Crash simulation

000,0 ,,, ftplεσ
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� Anisotropy
� Yield locus

� Damage
� Dynamic effects

Schmeing, Haufe & Feucht [2007]
Neukamm, Feucht & Haufe [2007]

Incompatible Models:
Isochoric plastic behavior
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Produceability to Serviceability: Modular Concept

Damage model

Material model Material model
00, , tplε

plεσ ,

Mapping

tpl ,ε

D D
Damage model

plεσ ,

Forming simulation                                              Crash simulation

D D

Modular Concept:

•Proven material models for both disciplines are retained

•Use of one continuous damage model for both 
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GISSMO

Barlat Mises
00,0 ,, tplεσ
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D D
GISSMO

plεσ ,

Forming simulation                                              Crash simulation

Ebelsheiser, Feucht & Neukamm [2008]

Neukamm, Feucht, DuBois & Haufe [2008-2010]

Produceability to Serviceability: Modular Concept
Current status in 971R5
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J. Lemaitre, A Continuous Damage 

Mechanics Model for Ductile Fracture

Overall Section Area 
containing micro-defects

Reduced (“effective“) 
Section Area

SS <ˆS S

SS
D

ˆ−
=

Measure of 

Damage

Reduction of effective cross-section leads to 
reduction of tangential stiffness

� Phenomenological description
( )D−= 1*
σσ

GISSMO – a short description
Effective stress concept (similiar to MAT_81/224 etc.)
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Gurson

Mises

Forming
Crash

GISSMO

Damage Evolution

Damage overestimated 
for linear damage 
accumulation

Failure Curve

Neukamm, Feucht, DuBois & Haufe [2008-2010]

GISSMO - a short description 
Ductile damage and failure

triaxiality
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Gurson

Mises

Forming

Crash

Evolution of Instability Material Instability

Material Instability
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GISSMO – a short description 
Engineering approach for instability failure n
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Neukamm, Feucht, DuBois & Haufe [2008-2010]
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REMARK: Failure criterion for plane stress and 3D solids

Lode 
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� For shells (2D with the assumption of plane stress ) triaxility

and Lode angle depend on each other.

� fracture strain is a function of the triaxiality

� For Solids (3D) both the Lode angle and triaxiality are 

independent

� fracture strain is a function of triaxiality and Lode angle
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GISSMO – a short description
Inherent mesh-size dependency of results in the post-critical region
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Simulations of tensile test specimen with different mesh sizes

Regularization of 
mesh-size dependency

element size

Influence of damage in 
postcritical region
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DMGTYP: Flag for coupling (Lemaitre)

( )D−= 1* σσ

DCRIT, FADEXP: Post-critical behavior
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GISSMO – a short description 
Generalized Incremental Stress State dependent damage MOdel
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To be considered:

8 Specimen geometries

5 Discretisations

GISSMO 
Identification of damage parameters: Range of experiments and simulations
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GISSMO 
Equivalent plastic strain vs. triaxiality

fε

triaxiality
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Flachzugproben DIN EN 10002 
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GISSMO vs. Gurson vs. 24/81 
Comparison of experiments and simulations
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GISSMO
� Failure Strain constant
� Fracture energy constant
� Identification of Damage Parameters 

is more straight-forward

Gurson
� Resultant Failure Strain constant
� Failure energy depending on el. size
� Identification of damage parameters

is difficult

Gurson vs. GISSMO – “regularized”
Regularization of element size dependency
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Example: tension rod

damage

instability

GISSMO input
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Example: Arcan shear test

instabilitydamage

damage

triaxiality
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� Constant failure criterion 
� Linear damage accumulation
� Failure not predicted correctly

� GISSMO-Criterion
� Linear accumulation 

of damage
� Possibly overestimated 

damage

� GISSMO-Criterion
� Nonlinear damage 

accumulation
� Rupture predicted correctly

GISSMO 
Deep-draw simulation of cross-die using GISSMO
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Forming simulation:
*MAT_36 (Barlat ´89)
*MAT_ADD_EROSION

(GISSMO)

Crash Simulation:
*MAT_24 (Mises)
*MAT_ADD_EROSION

(GISSMO)

Plast. strains Thickness distribution Damage

Mapping

Process chain with GISSMO
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Summary

� Features of GISSMO:

� The use of existing material models and respective parameters

� The constitutive model and damage formulation are treated separately

� Allows for the calculation of pre-damage for forming and crashworthiness 

simulations

� Characterization of materials requires a variety of tests 

� Automatic method for identification of parameters is to be developed

� Offers features for a comprehensive treatment of damage 

in forming simulations

� Available in LS-DYNA V9.71 R5

� Verification und validation of concept are under way
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Threepart failure concept
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Damage and failure concept
New implementation of a threepart failure model

IIσ

IσIIIσ

IIσ

Iσ

IIIσ

� By using the basic software architecture available since the implementation of GISSMO 
another client driven threepart failure and damage model has been implemented.

� The model will be available  in *MAT_ADD_EROSION starting with LS-DYNA V971 R5.

� The concept allows (theoretically) the combination with any available constitutive model in 
LS-DYNA. Hence the same idea for closing the gap between forming and crash simulations 
apply. 

� The individual criteria deliver strain rate dependent failure accumulation that is being input 
in tabulated from. 

� Using the accumulated data in subsequent simulations (multi-stage) simulations, the well 
established method of using the DYNAIN-files is chosen. Hence 
*INCLUDE_STAMPED_PART will be able to handle the new option.
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Plastic strain

ε�

Basis material model: e.g. MAT_24
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Damage and failure concept

� Three individual criteria may predict failure in thin sheet metal.

� Post-critical behavior is defined by allowance of an additional 
displacement in each element. 

� The element is deleted if a defined number of integrations 
points is flagged as „failed“.

Ductile failure Shear failure Instability criteria

For the ductile initiation option a function 

( , )p p p

D Dε ε η ε= �

represents the plastic strain at onset of 

damage (P1). This is a function of 

stress triaxiality defined as

/p qη = −

with p being the pressure and q the 

von Mises equivalent stress. 

Optionally this can be defined as a 

table with the second dependency 

being on the effective plastic strain 

rate       .
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For the shear initiation option a function 

( , )p p p

D Dε ε θ ε= �

represents the plastic strain at onset of 

damage (P1). This is a function of a shear 

stress function defined as

( ) /Sq k pθ τ= +

with p being the pressure, q the von 

Mises equivalent stress and τ the 

maximum shear stress defined as a 

function of the principal stress values

( )major minor
/ 2τ σ σ= −

Introduced here is also the pressure 

influence parameter kS (P2). 

Optionally this can be defined as a 

table with the second dependency 

being on the effective plastic strain 

rate     . The damage initiation 

history variable evolves according to
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For the MSFLD initiation option a function 

( , )p p p

D Dε ε α ε= �

represents the plastic strain at onset of 

damage. This is a function of the ratio of 

principal plastic strain rates defined as

minor major/
p pα ε ε= � �

The MSFLD criterion is only relevant 

for shells and the principal strains 

should be interpreted as the in-plane 

principal strains. The damage initiation 

history variable evolves according to:
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Failure mechanism in sheet metal deformation

Ductile failure criteria
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Thank you for your attention!

Dynamore GmbH

Industriestraße 2
70565 Stuttgart

Germany
http://www.dynamore.de


