## Isogeometric Analysis: Introduction and Overview

#### T.J.R. Hughes

Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin

Collaborators:

F. Auricchio, I. Babuska, Y. Bazilevs,
L. Beirao da Veiga, D. Benson, M. Borden,
R. de Borst, V. Calo, J.A. Cottrell, T. Elguedj,
J. Evans, H. Gomez, S. Lipton, A. Reali,
G. Sangalli, M. Scott, T. Sederberg,
C. Verhoosel, J. Zhang



LSTC Livermore Software Technology Corp.



Courtesy of General Dynamics / Electric Boat Corporation



# Outline

- Isogeometric analysis
- B-splines, NURBS
  - Mathematical theory of *h*-refinement
  - Structures
  - Vibrations
  - Wave propagation
  - Kolmogorov *n*-widths
  - Nonlinear solids
    - Hyperelastic nearlyincompressible solids
    - Hyperelastic-plastic solids
  - Design-through-analysis
    - Shells (w/wo rotations)
  - Fluids and fluid-structure interaction
  - Phase-field modeling
  - Cardiovascular simulation

- T-splines
  - Design-through-analysis
    - Shells
  - Nonlocal and gradient-enhanced damage-elastic materials
  - Local refinement
  - Cohesive zone analysis of discrete cracks
- Bezier extraction
- Research progress



# **Isogeometric Analysis**

- Based on technologies (e.g., NURBS, T-splines, etc.) from computational geometry used in:
  - Design
  - Animation
  - Graphic art
  - Visualization



- Includes standard FEA as a special case, but offers other possibilities:
  - Precise and efficient geometric modeling
  - Simplified mesh refinement
  - Smooth basis functions with compact support
  - Superior approximation properties
  - Accurate derivatives and stresses
  - Integration of design and analysis











**B-Splines** 

## **B-spline Basis Functions**

• 
$$N_{i,0}(\xi) = \begin{cases} 1 & \text{if } \xi_i \leq \xi < \xi_{i+1}, \\ 0 & \text{otherwise} \end{cases}$$

• 
$$N_{i,p}(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p-1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi} N_{i+1,p-1}(\xi)$$



B-spline basis functions of order 0, 1, 2 for a *uniform knot vector:* 

 $\Xi = \{0, 1, 2, 3, 4, \dots\}$ 





Quadratic (*p*=2) basis functions for an *open, non-uniform knot vector:* 

 $\Xi = \{0,0,0,1,2,3,4,4,5,5,5\}$ 



#### h-refined Curve



#### Further *h*-refined Curve





### Cubic *p*-refined Curve



#### Quartic *p*-refined Curve



# NURBS Non-Uniform Rational B-splines

## Circle from 3D Piecewise Quadratic Curves





### h-refined Surface



Control net





## Further *h*-refined Surface



Control net



Mesh





## Cubic *p*-refined Surface

Control net







## Quartic *p*-refined Surface

Control net



Mesh







# Isogeometric Analysis

Toward Integration of CAD and FEA



J. Austin Cottrell Thomas J. R. Hughes Yuri Bazilevs

WILEY

# Isogeometric Analysis

Toward Integration of CAD and FEA



J. Austin Cottrell Thomas J. R. Hughes Yuri Bazilevs

#### **ICES**

# Institute for Computational Engineering and Sciences

#### Austin, Texas, U.S.A.



**WILEY** 

#### Finite Element Analysis and Isogeometric Analysis

| Compact support       |
|-----------------------|
| Partition of unity    |
| Affine covariance     |
| Isoparametric concept |
| Patch tests satisfied |

### **Approximation with NURBS**

#### Theorem

Let *k*,*l*, be the integer indices such that  $0 \le k \le l \le p+1$ . Let  $u \in H^{l}(\Omega)$ , then

$$\sum_{K \in K_{h}} \left| u - \Pi_{V_{h}} u \right|_{H^{k}(K)}^{2} \leq C \sum_{K \in K_{h}} h_{K}^{2(l-k)} \sum_{i=0}^{l} \left\| \nabla \mathbf{F} \right\|_{V^{\infty}(\mathbf{F}^{-1}(K))}^{2(i-l)} \left| u \right|_{H^{i}(K)}^{2}$$
Positive "constant,"  
depends on *p*, smoothness of *V<sub>h</sub>*, shape regularity of the mesh,

shape of  $\Omega$  (but not its size), etc.

dimensionally consistent.

### Variation Diminishing Property



## **Vibration Analysis**

## NASA Aluminum Testbed Cylinder (ATC)





## **NASA ATC Frame**


## NASA ATC Frame and Skin











## First Rayleigh Mode



### **First Love Mode**



## **ATC Frame and Skin**



# Vibration of a Finite Elastic Rod with Fixed Ends

Problem:

$$\begin{cases} u_{xx} + \omega^2 u = 0 & \text{for } x \in (0, 1) \\ u(0) = u(1) = 0 \end{cases}$$

Natural frequencies:

 $\omega_n = n\pi$ , with n = 1, 2, 3, ...Frequency errors:

 $\omega_n^h / \omega_n$ 

### Comparison of C<sup>0</sup> FEM and C<sup>*p*-1</sup> NURBS Frequency Errors



### Comparison of C<sup>0</sup> FEM and C<sup>*p*-1</sup> NURBS Frequency Errors



Problems with NURBS-based Engineering Design

- Water-tight merging of patches
- Trimmed surfaces





Courtesy of Juan Santocono

























# **T-splines**



#### Unstructured NURBS Mesh



#### **Reduced Number of Control Points**







#### Trimmed NURBS

### **Untrimmed T-spline**





### Water-tight merging of patches



Water-tight untrimmed T-spline

### Design-through-Analysis\*

• Idea:

Extract surface geometry file from *commercial* CAD modeling software and use it directly in *commercial* FEA software

• Goal:

**Bypass** mesh generation

• Test case:

Import T-spline from Rhino (with T-Spline, Inc. plugin) surface files directly into LS-DYNA for Reissner-Mindlin shell theory analysis

\*Collaboration with D. Benson





### Mode 9



S. Kolling, Mercedez Benz

# Nonlocal and Gradient-enhanced Damage-elastic Materials

#### **Constitutive equation**

The Caucy stress is assumed related to the infinitesimal strain tensor by the damage-elastic Hooke's law,

$$\sigma_{ij} = \left(1 - \omega(\kappa)\right)C_{ijkl}\epsilon_{kl}$$

where  $\omega \in [0,1]$  is the damage parameter and  $\kappa$  is a history parameter.

# **Nonlocal Strain Representation**

Nonlocality is introduced by defining a nonlocal equivalent strain,

$$\overline{\eta}(x) = \frac{\int_{y \in \Omega} g(x, y) \eta(y) dy}{\int_{y \in \Omega} g(x, y) dy}$$

The weighting function is defined by

$$g(x,y) = \exp\left(-\frac{\|x-y\|^2}{2\ell_c^2}\right)$$

Problem: Dense coefficient matrices

# Implicit Gradient Enhancement

Nonlocal equivalent strain can be approximated by implicit gradient enhancement:

$$\mathcal{L}^{d}\overline{\eta} \approx \overline{\eta}(x) - \frac{1}{2}\ell_{c}^{2}\frac{\partial^{2}\overline{\eta}}{\partial x_{i}^{2}}(x) + \frac{1}{8}\ell_{c}^{4}\frac{\partial^{4}\overline{\eta}}{\partial x_{i}^{2}\partial x_{j}^{2}}(x) - \frac{1}{48}\ell_{c}^{6}\frac{\partial^{6}\overline{\eta}}{\partial x_{i}^{2}\partial x_{j}^{2}\partial x_{k}^{2}}(x) + \ldots = \eta(x).$$

Sixth-order derivatives pose significant implementational problems for *C*<sup>0</sup>-continuous finite elements.

Solution: C<sup>2</sup>-continuous T-splines.

# **Three Point Bending Problem**



# **Three Point Bending**

 $u=0.875\,\mathrm{mm}$ 



u = 2.00 mm
## **Three Point Bending**



# Local Refinement



# **First Refinement**



## **Second Refinement**



## **Third Refinement**











 $\Xi = \{0, 0, 0, 0, 1, 1, 2, 3, 4, 4, 4, 4\}$ 



 $\Xi = \{0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 4, 4, 4\}$ 



 $\Xi = \{0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 4, 4, 4\}$ 



 $\Xi = \{0,0,0,0,1,1,1,2,2,2,3,4,4,4,4\}$ 



 $\Xi = \{0,0,0,0,1,1,1,2,2,2,3,3,4,4,4,4\}$ 



 $\Xi = \{0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4\}$ 

## **Cubic Bezier Element**



#### **Bezier Decomposition**



## Localizing the Extraction Operator

|                                                                                                                                                           | `                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |                                                                      |                                                                           | 2                                                                          |                                                                 | and the second s |                                                                    |                                                                                 |                            |                            |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|----------------------------|---|
| N <sub>1</sub> N<br>N <sub>2</sub> N <sub>3</sub> N <sub>4</sub> N <sub>5</sub> N <sub>6</sub>                                                            | I <sub>7</sub>                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |                                                                      | 1                                                                         | 4                                                                          | 5 6                                                             | 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    | 13                                                                              |                            |                            |   |
| NURBS                                                                                                                                                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |                                                                      |                                                                           |                                                                            | Bez                                                             | zier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                                                 |                            |                            | ſ |
| $\left\{ \begin{array}{c} N_{1} \\ N_{2} \\ N_{3} \\ N_{4} \\ N_{5} \\ N_{6} \\ N_{7} \end{array} \right\} = \left[ \begin{array}{c} \end{array} \right]$ | 1 0<br>0 1<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0 | $     \begin{array}{c}       0 \\       \frac{1}{2} \\       \frac{1}{2} \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\   $ | $ \begin{array}{c} 0 \\ 1/4 \\ 7/12 \\ 1/6 \\ 0 \\ 0 \\ 0 \end{array} $ | $ \begin{array}{c} 0 \\ 0 \\ 2/3 \\ 1/3 \\ 0 \\ 0 \\ 0 \end{array} $ | $ \begin{array}{c} 0 \\ 0 \\ 1/3 \\ 2/3 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $ | $ \begin{array}{c} 0 \\ 1 \\ 6 \\ 2 \\ 3 \\ 1 \\ 6 \\ 0 \\ 0 \end{array} $ | $ \begin{array}{c} 0 \\ 0 \\ 2/3 \\ 1/3 \\ 0 \\ 0 \end{array} $ | $     \begin{array}{c}       0 \\       0 \\       \frac{1}{3} \\       \frac{2}{3} \\       0 \\       0     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} 0 \\ 0 \\ 1/6 \\ 7/12 \\ 1/4 \\ 0 \end{array} $ | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{array} $ | 0<br>0<br>0<br>0<br>1<br>0 | 0<br>0<br>0<br>0<br>0<br>1 |   |

## Localizing the Extraction Operator



#### Bezier Extraction and the Finite Element Framework

Given f, find  $u^h \in S^h$ , such that, for all  $w^h \in \mathcal{V}^h$ ,  $a(w^h, u^h) = (w^h, f)$  $w^h = \sum_{A=1}^n c_A R_A$  $u^h = \sum_{B=1}^n d_B R_B$  Matrix Problem:

 $\mathbf{K}\mathbf{d} = \mathbf{F}$ 

$$\mathbf{K} = [K_{AB}],$$
$$\mathbf{F} = \{F_A\},$$
$$\mathbf{d} = \{d_B\},$$
$$K_{AB} = a(R_A, R_B),$$
$$F_A = (R_A, f)$$

## Element Shape Function Routine: Bezier Element Perspective



#### **Research Progress:**





<sup>(</sup>David Gu)

- Shape and Topology Optimization ☑
- Efficient quadrature and collocation ☑
- Mathematical theory ☑
  - *h*-convergence ⊠
  - Kolmogorov *n*-widths ☑
- Various nonlinear structural applications 🗹
  - Shells, w/wo rotational DOF ☑
  - Implicit gradient enhanced damage ☑
  - Contact  $\square$ , frictional sliding  $\square$
- Turbulence and fluid-structure interaction  $\square$
- Aero- and hydro-acoustics ☑
- Phase-field methods ☑

٠

- Navier-Stokes-Korteweg equations ☑
- Crack propagation ☑
- Electromagnetics (Buffa, Sangalli, Vasquez, et al.) ☑
- Efficient mesh refinement algorithms ☑
- Integration of modeling and analysis tools  $oldsymbol{arDelta}$ 
  - Analysis-suitable surface descriptions  $\Box$
  - Analysis-suitable volume parameterizations
     from CAD surfaces □

#### USACM / ICES Thematic Conference: IGA 2011

#### **Isogeometric Methods – Integrating Design and Analysis**

Institute for Computational Engineering and Sciences (ICES) University of Texas at Austin January 13-15, 2011, Save the date!

Organizers: David Benson, Yuri Bazilevs, Thomas J.R. Hughes.

