x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

An Integrated Process for Occupant Safety Simulations with LS-DYNA & MADYMO Coupling

This paper presents an innovative integrated process to perform occupant safety simulation with LS-Dyna & Madymo coupling. More than ever before, the automotive industry operates in a highly competitive environment. Manufacturers must deal with competitive pressure and with conflicting demands from customers and regulatory bodies regarding the vehicle functional performance, which forces them to develop products of increasing quality in even shorter time. To address these challenges and deliver optimal collaboration between design and engineering, the integration between CAD and CAE is key. Through a strong link between CAD and CAE, along with the integration of all simulation steps in one environment, new methodologies are developed, allowing the full utilization of parametric geometry based analysis, enabling quick “what if” scenarios simulation, and thus front-loading design with simulation. Complex CAD based assembly is fully automated, reducing the risk of modeling mistakes. Moreover, repetitive tasks such as definition of the model symmetry, are performed automatically. These functionalities allow crash engineers to focus on the impact/safety simulations set up and not on the model construction. LMS Virtual.Lab is fully integrated with Dassault System CATIA V5, therefore seamlessly linking CAD with CAE. In the field of occupant safety, Virtual.Lab pushes the integration a step forward through the support of Madymo Coupling Assistant. Tedious dummy positioning and coupling contact creation becomes straightforward with the visualization of the Madymo dummy in its LS-Dyna FE model environment. A real life industrial case is presented consisting of a CAD based assembly of a door sub-system is performed automatically through automation, and then integrated within a quarter body in white. A Madymo dummy is then positioned wrt the vehicle model, allowing to define coupling simulation of a side impact with LS-DYNA and MADYMO solvers. Back to back comparison of traditional CAE and the proposed new methodology is highlighted to provide a measure of the savings that can be realized.