Isogeometric Analysis in LS-DYNA

David J. Benson Dept. of Structural Engineering UCSD

Collaborators: Yuri Bazilevs, Ming-Chen Hsu, Tom Hughes, and Emmanuel De Luyckyer, Ted Belytschko

Introduction

- Isogeometric analysis: finite element analysis performed using the same basis functions as in computer aided design (CAD).
- CAD basis functions:
 - NURBS: accepted standard for many years.
 - T-Splines: newcomer with advantages.
 - Subdivision surfaces: from animation industry. Future in CAD and analysis unclear.
 - It is clear that basis functions are a very active area of research for both the CAD and computer animation industries.
- Implementing elements for specific basis functions is
 - Extremely time consuming.
 - Software may quickly become obsolete as new basis functions are introduced.
- Desire an ability to rapidly prototype new elements.

- Piecewise polynomials in space.
- Degree determined the the knot vector: $\Xi = \{\xi_1, ..., \xi_{n+p+1}\}$
- Coefficients of polynomials are points in space, referred to as *control points*, B_i
- Basis functions are generated recursively using the knot vector starting at *p*=0 (piecewise constants).

$$N_{i,0}(\xi) = \begin{cases} 1 \text{ if } \xi_i \leq \xi < \xi_{i+1} \\ 0 \text{ otherwise.} \end{cases}$$
$$N_{i,p}(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p-1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p-1}(\xi).$$

- Each increase in degree typically increases the continuity too:
 - Linear B-spline: C₀
 - Quadratic B-spline: C₁
 - Cubic B-Spline: C₂
- Example: Euler-Bernoulli beams require C₁ continuity.
 - Conventional FEM: Cubic Hermitian polynomials.
 - B-spline: Quadratic w/o rotational DOF

• 1-D: For *n* elements with degree *p* polynomials and a continuity of *c*, then number of basis functions *N* is

$$N = n \cdot (p+1) - (c+1) \cdot (n-1)$$

- Example: 10 quadratic (p=2) elements
 - Lagrange polynomial: 10(2+1)-(0+1)(10-1)=21
 - B-spline: 10(2+1)-(1+1)(10-1)=12

- Fewer basis functions means fewer integration points → cheaper higher order elements.
- Continuation of 1-D Example:
 - Lagrangian: 21/10 ~ 2 points/element.
 - B-Spline: 12/10 ~ 1 point/element.
- Multi-D:
 - 2x2x2 for quadratic B-Spline solids.
 - 2x2 for quadratic shells.

Properties of B-Splines

• B-splines sum to 1 like Lagrange interpolation functions.

$$\sum_{i=1}^n N_{i,p}(\xi) = 1 \; \forall \xi$$

- The support of each $N_{i,p}(\xi)$ compact and contained in the interval $[\xi_i, \xi_{i+p+1}]$ similar to Lagrange interpolation polynomials.
- B-spline basis functions are non-negative:

$$N_{i,p}(\xi) \geq 0 \ orall \xi$$

(in contrast to higher order Lagrange polynomials).

Cubic B-Spline Basis Functions

 $\Xi = \{0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1, 1\}$

B-Spline Surfaces and Solids

 Surfaces and solids are described in terms of tensor products of onedimensional basis functions as is standard with Lagrange interpolation functions in standard FEA.

$$\begin{split} \mathbf{S}(\xi,\eta) &= \sum_{i=1}^{n} \sum_{j=1}^{m} N_{i,p}(\xi) M_{j,q}(\eta) \mathbf{B}_{i,j} \quad \text{Surface} \\ \mathbf{S}(\xi,\eta,\zeta) &= \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{l} N_{i,p}(\xi) M_{j,q}(\eta) L_{k,l}(\zeta) \mathbf{B}_{i,j,k} \text{ Solide} \end{split}$$

NURBS Basis Functions

- Non-Uniform Rational B-Splines (NURBS)
- Control points are homogenous coordinates. $(\mathbf{B}_i)_j = \frac{(\mathbf{B}_i^w)_j}{w_i}, j = 1, ..., d \quad w_i = weights$
- Basis functions: $R_i^p(\xi) = \frac{N_{i,p}(\xi)w_i}{\sum_{\hat{i}=1}^n N_{\hat{i},p}(\xi)w_{\hat{i}}}$

• Curve:
$$\mathbf{C}(\xi) = \sum_{i=1}^{n} R_i^p(\xi) \mathbf{B}_i$$

 Previous comments about B-splines apply to NURBS

Intro to Generalized Elements

KEY IDEAS:

- 1. Elements are formulated in terms of *generalized coordinates*.
- 2. Software implementation is independent of the basis functions.
- 3. New basis functions can be used immediately, permitting rapid prototyping of elements.
- Instantiations of the generalized elements are defined in the input data by specifying the values of the integration weights, the basis function values and their derivatives.

Kinematics & Semi-discrete Equations

• Similar to the standard FE formulation.

$$\begin{aligned} x(s,t) &= \sum_{A=1,N} N_A(s) q_A(t) \\ \dot{x}(s,t) &= \sum_{A=1,N} N_A(s) \dot{q}_A(t) \\ \ddot{x}(s,t) &= \sum_{A=1,N} N_A(s) \ddot{q}_A(t) \end{aligned}$$

$$X(s) = x(s,0) = \sum_{A=1,N} N_A(s)q_A(0)$$
$$u(s,t) = x(s,t) - X(s)$$
$$\delta x(s) = \sum_{A=1,N} N_A(s)\delta q_A$$

• Everything else follows similarly. $\sum_{B} M_{AB} \ddot{q}_{B} + \int_{V} B_{A}^{T} \sigma dV = \int_{S} h N_{A} dS + \int_{\Omega} b N_{A} dV$

Basis Functions for Shells & Solids

- Valid for:
 - NURBS
 - T-Splines
 - Lagrange polynomials (standard FEM)
 - Subdivision surfaces
 - X-FEM (in collaboration with Belytschko)
 - Normal modes
 - & More...
- All LS-DYNA isogeometric (NURBS & T-Spline) calculations currently performed with generalized elements.

Notes on Visualization

- NURBS control points don't live on shell surfaces or solid volumes.
- LS-PREPOST only visualizes elements with linear basis functions.
- Interpolation elements: linear elements generated to visualize isogeometric results.
- Interpolation nodes: nodes defined for interpolation elements. Motion is linear function of control points.
- Usually represent isogeometric element of degree P with P x P patch of linear elements.
 - Quadratic: 2 x 2 patch of linear quadrilaterals.
 - Cubic: 3 x 3 patch of linear quadrilaterals.

LS-DYNA Input Structure Generalized Shell Elements

Input for the generalized solid elements is similar.

Intro to Generalized Elements: Applications to Solids

- Geometry defined in terms of
 - Parametric coordinates on domain, s
 - Generalized coordinates in time, $q_A(t)$
 - Basis functions, $N_A(s)$

$$x(s,t) = \sum_{A=1,N} N_A(s) q_A(t)$$

- Generalized coordinates are not assumed to be interpolatory.
- Formulation is isoparametric and spatially isotropic.

Square Taylor Bar Impact

Quadratic NURBS

27 Node Quadratic

1-Pnt Hex

Formulation	# Nodes/ CP	Peak Plastic Strain	# Time Steps	
1-Pnt Hex	2677	2.164	2136	
Quad. Lagr.	2677	2.346	3370	-
Quad. NURBS	648	2.479	954	

Oquale rayior Dar impact											
				Integ.				Time	CPU		
		Туре	Degree	Points	Nodes	Elements	$ar{\epsilon}^p_{ ext{max}}$	Steps	Seconds		
		Lagrange	1	1	81	32	1.34628	314	7.325e-2		
		Lagrange	1	1	425	256	1.8642	872	3.726e-1		
		Lagrange	1	1	1225	864	2.04989	1500	1.535		
		Lagrange	1	1	2673	2048	2.16408	2136	4.6027		Type 1
		Lagrange	2	27	81	4	1.6764	609	.58415		
io		Lagrange	2	27	425	32	1.91551	1293	2.1039		
Jrat		Lagrange	2	27	1225	108	2.20551	2436	10.918		
teg		Lagrange	2	27	2673	256	2.34649	3370	35.509		
		NURBS	2	27	54	4	1.50409	229	.10276		
lu l		NURBS	2	27	160	32	1.93467	465	.6906		
		NURBS	2	27	648	256	2.47937	954	9.2623		
		NURBS	2	8	54	4	1.57547	200	7.739e-2		
uo		NURBS	2	8	160	32	1.85617	432	.28568		
rati		NURBS	2	8	648	256	2.41749	1051	3.878		
egi		NURBS	3	27	160	4	1.79937	293	.2098		
Int		NURBS	3	27	648	32	2.02539	702	1.8819		
ed		NURBS	3	27	3400	256	2.32435	1974	37.472		
nc		NURBS	4	64	350	4	1.86798	380	.7969		The Real
led		NURBS	4	64	1664	32	2.09956	1015	10.17		
Ϋ́		NURBS	4	64	9800	256	2.48212	2550	204.8		TRITO

Square Taylor Bar Impact

Square Taylor Bar Impact Cost Comparisons

Element	8-Node Hex	27-Node NURBS	64-Node NURBS
Integration	1-Point	2x2x2	4x4x4
Cost/ Element	1.05x10 ⁻⁶	14.14x10 ⁻⁶	74.0x10 ⁻⁶
Cost/Node	0.31x10 ⁻⁶	0.53x10 ⁻⁶	1.16x10⁻ ⁶
Cost Ratio/ Node	1.0	4.0	8.85
Node Ratio	1.0	3.375	8.0

Cost per node scales roughly linearly with the number of nodes in element.

Isogeometric X-FEM

- Higher order linear static fracture analysis in collaboration with Ted Belytschko.
- Enriched degrees of freedom treated as additional nodes.
- Enrichment functions are not spatially isotropic, therefore constraints are added to eliminate unwanted enrichment contributions.

Enrichment Functions

Ventura, Gracie, and Belytschko, IJNME, 2009 $u(x) = u^{\text{IsoGeo}}(x)$ $\nabla \mathbf{v} (\mathbf{v}) \sim$

Anisotropic enrichment field violates generaliz element isotropy assumption.

 N'_J

 K_{Ix}

$$= u^{130000}(x) + \sum_{i} N_{J}(x) [H(y) - H_{J}] a_{J} + K_{I}[u_{K_{I}}^{\infty}(x) - \sum_{L} N_{L}(x)u_{K_{I},L}^{\infty}]$$

field neralized
bropy
$$u_{K_{I}}^{\infty}(x) = \begin{cases} u_{x}^{\infty} \\ u_{y}^{\infty} \end{cases} = \frac{\sqrt{r}}{2\sqrt{2\pi\mu}} \begin{cases} (-1/2 + \kappa)\cos(\frac{\theta}{2}) - 1/2\cos(\frac{3\theta}{2}) \\ (1/2 + \kappa)\sin(\frac{\theta}{2}) - 1/2\sin(\frac{\theta}{2}) \end{cases}$$

$$y = \text{level set distance function from crack} \quad \kappa = 3 - 4\nu$$
Generalized Element Format
$$u(x) = \sum_{A} N_{A}q_{A} + \sum_{J} N_{J}'a_{J} + N_{K_{Ix}}''K_{Ix} + N_{K_{Iy}}''K_{Iy}$$

$$N_{J}' = N_{J}(x)[H(y) - H_{J}]$$

$$N_{K_{Ix}}'' = u_{K_{Ix}}^{\infty}(x) - \sum_{L} N_{L}(x)u_{K_{Ix},L}^{\infty}, \quad N_{K_{Iy}}'' = u_{K_{Iy}}^{\infty}(x) - \sum_{L} N_{L}(x)u_{K_{Iy},L}^{\infty}$$

$$q_{A}, a_{J}, K_{Ix}, K_{Iy} : \text{Nodal variables have dimension 3}$$

$$K_{Ix2} = K_{Ix3} = 0, \quad K_{Iy1} = K_{Iy3} = 0$$
Nodal constraints to account for anisotropic enrichment.

UC SAN DIEG

X-FEM + Isogeometric for Linear Fracture Exact K_I=100

X-FEM + Isogeometric Convergence in H₁ Norm

Generalized Shells

- Shear deformable and thin shell theories have been implemented.
- Shear deformable implementation is a hybrid of two formulations:
 - Degenerated solid of Hughes-Liu for basic kinematics.
 - Use normal vector instead of fiber vector as in Belytschko-Tsay to avoid ambiguities at shell intersections and to enhance the robustness for explicit calculations.

Shell Formulation With Rotations

• Geometry:
$$x(s,t) = \sum_{A} N_A(s) \left(q_A + \frac{h}{2} s_3 n_A \right)$$

• Velocity field:

$$\dot{x}(s,t) = \sum_{A} N_A(s) \left(\dot{q}_A + \frac{h}{2} s_3 \omega_A \times n_A \right)$$

• Definition of normal:

$$n_A = \frac{p}{|p|}, \quad p = \frac{\partial x}{\partial s_1} \times \frac{\partial x}{\partial s_2}$$

• Current input restricted to constant thickness shells, but not a theoretical limitation.

Thin Shell Formulation Without Rotations – Formulation 1

- Geometry: $x(s,t) = \sum_{A} N_A(s) \left(q_A + \frac{h}{2} s_3 n_A \right)$
- Velocity field:

$$\dot{x}(s,t) = \sum_{A} N_A(s) \left(\dot{q}_A + \frac{h}{2} s_3 \mathbf{n}_A \right)$$

• Definition of normal:

$$n_A = \frac{p}{|p|}, \quad p = \frac{\partial x}{\partial s_1} \times \frac{\partial x}{\partial s_2}$$

• Current input restricted to constant thickness shells, but not a theoretical limitation.

Thin Shell Formulation Without Rotations – Formulation 2

- Geometry: $x(s,t) = \sum N_A(s)q_A + \frac{h}{2}s_3n(s)$
- Velocity field:

$$\dot{x}(s,t) = \sum_{A} N_A(s)\dot{q}_A + \frac{h}{2}s_3\dot{n}(s)$$

• Definition of normal:

$$n = \frac{p}{|p|}, \quad p = \frac{\partial x}{\partial s_1} \times \frac{\partial x}{\partial s_2}$$

• Current input restricted to constant thickness shells, but not a theoretical limitation.

Rotation Free Shell Formulations

- Formulation 1:
 - Requires only 1st derivatives of the basis functions.
 - Sensitive to location of evaluation.
- Formulation 2:
 - Requires the 2nd derivatives of the basis functions.
- Approximately equal accuracy and costs *provided Formulation 1 derivatives evaluated correctly.*

Rotations versus No Rotations

• Rotational DOF are simpler to implement: $\dot{n}_A = \omega_A \times n_A$ versus $\dot{n}_A = \frac{1}{\sqrt{p_A \cdot p_A}} (I - n \otimes n) \sum_B \frac{\partial p_A}{\partial q_B} \cdot \dot{p}_B$ $\dot{n}_A = \sum_{A \to A} \sum_{B \to A} \frac{\partial N_B}{\partial q_B} \cdot \sum_{B \to A} \frac{\partial N_B}{\partial q_B} \cdot \dot{p}_B$

$$\dot{p}_B = \sum_C \frac{\partial N_C}{\partial s_1} \dot{q}_C \times \sum_D \frac{\partial N_D}{\partial s_2} q_D + \sum_C \frac{\partial N_C}{\partial s_1} q_C \times \sum_D \frac{\partial N_D}{\partial s_2} \dot{q}_D$$

- No rotations:
 - Half the DOF in implicit.
 - True thin shell approximation.

Implementation

• Strain rate evaluation through thickness.

$$L = \left[\frac{\partial \dot{x}}{\partial x}\right] = \left[\frac{\partial s}{\partial x}(s_1^\ell, s_2^\ell, s_3^t)\right] \left\{ \left[B^m(s_1^\ell, s_2^\ell)\dot{q}\right] + s_3^t \left[B^b(s_1^\ell, s_2^\ell)\dot{q}\right] \right\}$$

• Force evaluation at lamina integration point.

$$\begin{split} R^{f} &= \int_{-1}^{+1} \sigma \frac{\partial s}{\partial x} J ds_{3}, \quad R^{m} = \int_{-1}^{+1} \sigma \frac{\partial s}{\partial x} s_{3} J ds_{3} \\ F^{\ell} &= [B^{m}]^{T} R^{f}, \quad M^{\ell} = [B^{b}]^{T} R^{m} \quad \begin{array}{c} \text{Contributes to forces in} \\ \text{rotation free formulations.} \end{array} \end{split}$$

Available in LS-DYNA

- Analysis capabilities:
 - Implicit and explicit time integration.
 - Eigenvalue analysis.
 - Other capabilities (e.g., geometric stiffness for buckling analysis) implemented but not yet tested.
- LS-DYNA material library available in solids and shells (including user materials).
- Some boundary conditions implemented via interpolation elements.
 - Contact doesn't have underlying smoothness of NURBS.
 - Pressure distribution is not exactly integrated.
- Time step control: maximum system eigenvalue.
 - D. J. Benson, Stable Time Step Estimation for Multi-material Eulerian Hydrocodes, CMAME, 191--205 (1998).

Linear Vibration of a Square Plate Simply Supported

Exact solution for *thin* plate theory:

$$\omega_{ij} = C(i^2 + j^2) \quad 0 < i, j
 C = \pi^2 \sqrt{\frac{E}{\rho(12(1 - \nu^2))}} \frac{h}{L^2}$$

 $\pi\approx 3.1415926535897932384626433832795$

 $E = 10^7$, $\nu = 0.3$, $\rho = 1$, L = 10.0, and h = 0.05

Linear Vibration of a Square Plate Simply Supported

Linear Vibration of a Square Plate Error as a Function of Frequency Number

for Finest Meshes

Impulsively Loaded Roof

L = 12.56 in l = 10.205 in R = 3.0 in r = 3.08 in h = 0.125 in E = 1.05 × 10⁷ psi v = 0.33 ρ = 2.5 × 10⁻⁴ lb-s²/in⁴ σ_y = 4.4 × 10⁴ psi V₀ = 5650 in/s

Impulsively Loaded Roof Rotation Free Formulation 1

Impulsively Loaded Roof Rotation Free – Quadratic Elements

Element	Number of	Number of	Integration	Time	CPU	Maximum
Туре	Cntrl. Pnts.	Elements	Rule	Steps	(seconds)	Displacement
NURBS	180	130	2×2	364	0.54	0.988
NURBS	180	130	3×3	367	0.81	0.836
NURBS	540	450	2×2	740	2.90	1.289
NURBS	540	450	3×3	743	5.28	1.281
NURBS	1836	1666	2×2	1502	20.87	1.351
NURBS	1836	1666	3×3	1502	36.92	1.348
B-T	191	224	1×1	578	0.16	1.103
B-T	4656	4512	1×1	2027	10.5	1.277

Costs of R-M and rotation free shells are approximately the same.

All calculations performed in double precision.

Impulsively Loaded Roof Element Cost Comparisons

- B-T Element
 - 4 nodes.
 - 1-point integration.
 - Geometry projected to flat plane.
 - 1.148x10⁻⁶ s/element
 - 0.287x10⁻⁶ s/node

- Quadratic NURBS
 - 9 control points.
 - 2x2 integration.
 - Doubly curved shell.
 - 8.340x10⁻⁶ s/element
 0.927x10⁻⁶ s/node

Square Tube Buckling

- Standard benchmark for automobile crashworthiness.
- Quarter symmetry to reduce cost.
- Perturbation to initiate buckling mode.
- J₂ plasticity with linear isotropic hardening.
- Mesh:
 - 640 quartic (P=4) elements.
 - 1156 control points.
 - 3 integration points throught thickness.

Square Tube Buckling

Quartic Isogeometric NURBS

Quartic Square Tube Buckling

Metal Stamping

- NUMISHEET standard benchmark problem.
- Data:
 - Provided by R. Dick, Alcoa.
 - Benchmark solution uses 10⁴ type 16 shells.
- No changes made to input except to replace the blank with isogeometric shell elements.

NUMISHEET Benchmark Problem

UNTITLED

Time = 0, #nodes=2123, #elem=1958

Alcoa Benchmark Solution: Plastic Strain

3.0006-01

1

S

min=0, at elem# 2986 2.900e-01 max=0.290651, at elem# 5301 2.800e-01 2.700e-01 2.600e-01 2.500e-01 2.400e-01 2.300e-01 2.200e-01 2.100e-01 2.000e-01 1.900e-01 1.800e-01 1.700e-01 1.600e-01 1.500e-01 1.400e-01 1.300e-01 1.200e-01 1.100e-01 1.000e-01 9.000e-02 8.000e-02 7.000e-02 6.000e-02 5.000e-02 4.000e-02 3.000e-02 10000 Type 16 shells 2.000e-02 1.000e-02 0.000e+00

Comparison of Rotation-Free Shell to Reference Solution

Alcoa Reference Solution: Z Disp.

S-RAIL Simulation Contours of Z-displacement min=-0.179048, at node# 5280 max=40.0438, at node# 3354

Fringe Levels 4.000e+01 3.990e+01 3.980e+01 3.970e+01 3.960e+01 3.950e+01 3.940e+01 3.930e+01 3.920e+01 3.910e+01 3.900e+01 3.890e+01 3.880e+01 3.870e+01 3.860e+01 3.850e+01 3.840e+01 3.830e+01 3.820e+01 3.810e+01 3.800e+01 3.790e+01 3.780e+01 3.770e+01 3.760e+01 3.750e+01 3.740e+01 3.730e+01 3.720e+01 3.710e+01 3.700e+01 UC SAN DIEGO

Isogeometric Solutions: Z Disp. Rotation Free Shells

Design-to-Analysis With T-Splines

- Bumper modeled by Mike Scott with commerical T-Spline Inc. software.
- Eigenvalue analysis with generalized elements in commercial version of LS-DYNA.
- No constraints.
- Mesh data:
 - 876 generalized Reissner-Mindlin shell elements (cubic basis functions).
 - 705 control points.
- Material properties:
 - E=10⁷.
 - Poisson's ratio=0.3.
 - Thickness=1.0.

Bumper Model with Unstructured Mesh of Cubic T-Spline Elements

Interpolation elements displayed.

Each generalized element depicted by 3x3 patch of interpolation elements.

Bumper: First Bending Mode

Summary

- Higher order accurate isogeometric analysis can be cost competitive even in explicit dynamics.
- Shell formulations without rotational DOF can be cost competitive to conventional formulations.
 - Cost competitive for explicit.
 - May be cost beneficial for implicit.
 - Fewer DOF.
 - Eliminate convergence problems with rotational DOF.
- Future implementations will only get faster.
- Accuracy is excellent.
- Robustness is excellent.

