x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Modeling the Low Velocity Impact on Thick-Section Composite Cylinder

Composite materials frequently have been applied to axi-symmetric filament-wound cylinder structures due to their specific stiffness and strength properties. When these structures are subjected to low-velocity impact (LVI), there exists a possibility of significant material damage which can drastically reduce the structural performance. The main objective of this paper is to predict the low velocity impact damage in thick composite cylinders using MAT162 progressive damage model implemented in LS-DYNA®. In this paper, damage prediction of a thick composite cylinder under low-velocity impact using uni-directional (UD) composite model of MAT162 is presented. A finite element model (FEM) of a thick composite cylinder with appropriate boundary conditions is developed to predict impact damages under different impact energies of a cylindrical steel impactor. Dynamic deformation, damage progression, and energy dissipation of the composite cylinder under LVI loading as a function of impact energy are presented.