x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Investigation of the Shear Thickening Fluid Dynamic Properties and its Influence on the Impact Resistance of Multilayered Fabric Composite Barrier

The results of experimental and computational study of properties of shear thickening fluid (STF) are observed. Two series of dynamic tests by the Split Hopkinson Pressure Bar method in rigid and soft casings are carried out to determine the dynamic bulk and shear properties of STF. A simplified mathematical model of the STF is formulated for the use in computer simulation of ballistic impact tests of multilayered fabric composite protective shells (Kevlar + STF). Numerical simulation is conducted with nonlinear LS-DYNA® code using ALE approach. The study confirmed the hypothesis about the possibility to describe STF behavior by a Newtonian fluid model in the characteristic range of strain rates. The parameters of shear viscosity and bulk compressibility of the model are defined. It is concluded that the contact interaction between STF and Kevlar basis is described by Coulomb friction law which is unnatural for fluid interactions. It is shown that the effectiveness of the STF impregnation is due to the facts of composite layers collapsing prevention and presence of internal friction.