x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Predicting the Dynamic Crushing Response of a Composite Honeycomb Energy Absorber Using Solid-Element-Based Models in LS-DYNA

This paper describes an analytical study that was performed as part of the development of an externally deployable energy absorber (DEA) concept. The concept consists of a composite honeycomb structure that can be stowed until needed to provide energy attenuation during a crash event, much like an external airbag system. One goal of the DEA development project was to generate a robust and reliable Finite Element Model (FEM) of the DEA that could be used to accurately predict its crush response under dynamic loading. The results of dynamic crush tests of 50-, 104-, and 68-cell DEA components are presented, and compared with simulation results from a solid-element FEM. Simulations of the FEM were performed in LS-DYNA®* to compare the capabilities of three different material models: MAT 63 (crushable foam), MAT 26 (honeycomb), and MAT 126 (modified honeycomb). These material models are evaluated to determine if they can be used to accurately predict both the uniform crushing and final compaction phases of the DEA for normal and off-axis loading conditions.