x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Optimization of an Adaptive Restraint System Using LS-OPT and Visual Exploration of the Design Space Using D-SPEX

The purpose of this paper is to explore some interesting aspects of optimization for crashworthiness occupant safety applications and to propose optimization strategies for highly nonlinear problems. With the today’s state of technology i t is possible to identify specific load cases and different types of occupants i n the car. System parameters of the restraint system, such as trigger time for seat- belt, airbag and steering column can be adapted to particular load cases. This is referred to an adaptive restraint system. I n the first part of the paper different optimization strategies are discussed and pros and cons are compared. I n addition, a methodology to get a reliable surrogate model using neural networks is introduced. The surrogate model (Meta-Model or Response Surface Model) approximates the relationship between design parameters and a physical response and can be used to visualize and explore the design space. I n the second part the application of the Successive Response Surface Scheme (SRSM) for the optimization of an adaptive restraint system is conducted. For this, several front crash load cases are considered. This is performed using LS- OPT (Stander et al. [11]) as optimization software and PAM-Crash as solver for the finite element occupant safety simulations. The procedure of generating an advanced meta-model to get an approximation of the global design space using neural networks is demonstrated for this example. Furthermore, the visualization of multi-dimensional meta-models i n two- and three-dimensional design space is illustrated by using the matlab application D-SPEX. The program D-SPEX interfaces with LS-OPT as an advanced optimization and stochastic post-processor.