x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Fluid Structure Interaction in LS-DYNA Using Lagrangian Interfaces, Automatic Re-meshing and Adaptivity

The present work discusses a new Fluid Mechanics approach that will be introduced in future versions of LS-DYNA to solve incompressible flows. The objective of this new formulation will be to solve fluid-structure interaction problems using Lagrangian interfaces. In this way large deformations of structures are treated in a more natural fashion making it simpler to define the physical domain. Furthermore the proposed approximation will also deal with free surfaces and breaking waves. In a Lagrangian approach the mesh of the discrete problem moves together with the material particles. Thus for large deformations a very robust and fast re-meshing tool is being created. This tool will be incorporated in the software and all the re-meshing operations will be done automatically. Another key feature of this solver is that given an error estimator the re-meshing steps will also adapt the mesh to provide error control within the fluid solver.