x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

A Grid-based Adaptive Scheme for the Three-Dimensional Forging and Extrusion Problems with the EFG Method

Procedures to adaptively refine meshes are emerging as an important tool for improving accuracy and efficiency in large deformation and fracture analysis. Comparing to the mesh- based adaptive method, the grid-based adaptive mesh-free method has several built-in advantages including naturally conforming in shape functions, smoothed interpolations in surface construction and state variable transfer, and the results are less sensitive to the unstructured grids. In this paper, a grid-based adaptive scheme is proposed for the Element Free Galerkin method in the large deformation analysis of three-dimensional forging and extrusion simulations. To precisely account for the effect of kernel functions during adaptive procedure, we consider the meshfree adaptivity in the framework of arbitrary Lagragian-Eulerian meshfree method with an operator-split time integration. A grid-based interpolation scheme adopted from the meshfree approximation is developed for the state variable transfer after mesh refinement to improve conservation and monotonic properties. Several industrial problems have been solved and compared to the existing numerical methods.