x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Implementations of User Defined Shell Elements and Material Models to LS-DYNA and Their Application

Robustness, accuracy and good computational performance for large scale models are some of the salient requirements for general purpose finite element programs. A new one point quadrature shell element that meets these requirements has been previously developed in the works of Cardoso & Yoon (2005). In the theory, the finite element strain-displacement matrices are described in a convective coordinate system for the efficient implementation of a physical stabilization procedure. In order to increase the computational efficiency of the shell element, in this work the resultant-stress equations are formulated by reducing dimensionality to the shell's mid- surface. In order to improve the simulation accuracy of sheet metal forming simulation utilizing commercial software, the proposed one-point quadrature element and a typical fully integrated element have been implemented to LS-DYNA using the user element interface. In addition, a plane stress yield function (Yld2000-2d, Barlat et al. (2003)) and a new anisotropic model (Yld2004-18p, Barlat et al. (2005)) that accurately describe the anisotropic behavior of aluminum alloy sheets were also implemented to LS-DYNA user material option (UMAT). Several examples including sheet forming are presented to demonstrate the element's robustness and efficiency and to verify the interface.