A Simplified Approach for Strain-Rate Dependent Hyperelastic Materials with Damage
Simulation of rubber-like materials is usually based on hyperelasticity. If strain-rate dependency has to be considered viscous dampers are added to the rheological model. A disadvantage of such a description is time- consuming parameter identification associated with the damping constants. In this paper, a tabulated formulation is presented which allows fast generation of input data based on uniaxial static and dynamic tensile tests at different strain rates. Unloading, i.e. forming of a hysteresis, can also be modeled easily based on a damage formulation. We show the theoretical background and algorithmic setup of our model which has been implemented in the explicit solver LS-DYNA [1]-[3]. Apart from purely numerical examples, the validation of a soft and a hard rubber under loading and subsequent unloading at different strain rates is shown.
13MaterialModeling.pdf
— 256.1 KB