x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

A Summary of the Space Shuttle Columbia Tragedy and the Use of LS-DYNA in the Accident Investigation and Return to Flight Efforts

On February 1, 2003, the Space Shuttle Columbia broke apart during reentry resulting in loss of 7 crewmembers and craft. For the next several months an extensive investigation of the accident ensued involving a nationwide team of experts from NASA, industry, and academia, spanning dozens of technical disciplines. The Columbia Accident Investigation Board (CAIB), a group of experts assembled to conduct an investigation independent of NASA concluded in August, 2003 that the cause of the loss of Columbia and its crew was a breach in the left wing leading edge Reinforced Carbon-Carbon (RCC) thermal protection system initiated by the impact of thermal insulating foam that had separated from the orbiters external fuel tank 81 seconds into the missions launch. During reentry, this breach allowed superheated air to penetrate behind the leading edge and erode the aluminum structure of the left wing which ultimately led to the breakup of the orbiter. In order to gain a better understanding of the foam impact on the orbiters RCC wing leading edge, a multi-center team of NASA and Boeing impact experts was formed to characterize the foam and RCC materials for impact analysis using LS-DYNA. LS-DYNA predictions were validated with sub-component and full scale tests. LS- DYNA proved to be a valuable asset in supporting both the Columbia Accident Investigation and NASA’s return to flight efforts. This paper summarizes the Columbia Accident and the nearly seven month long investigation that followed. The use of LS-DYNA in this effort is highlighted. Contributions to the investigation and return to flight efforts of the multi-center team consisting of members from NASA Glenn, NASA Langley, and Boeing Philadelphia are covered in detail in papers to follow in these proceedings.

application/pdf common-2.pdf — 812.6 KB