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Abstract

A mesh-free formulation based on the Mindlin-Reissner shell theory for geometrical and material nonlinear analysis
of shellsis presented. In this mesh-free formulation, two projection methods are developed to generate the shell
surface using the Lagrangian mesh-free interpolations. The updated Lagrangian theory underlying the co-rotational
procedure is adopted for the local strain, stress and internal force updating. A local boundary integration method in
conjunction with the selective reduced integration method is introduced to enforce the linear exactness and relieve
shear locking. Both nonlinear static and dynamic analysis of shell structures with finite rotations are considered.
Several numerical examples are presented to demonstrate the accuracy and applicability of the proposed
formulation.

1. Introduction

Recent developments in mesh-free methods provide an additional dimension to computational
mechanics [1-5]. Those methods do not rely on the conventional grid approach to define
approximation functions. In comparison with the conventional finite element methods, the
smoothness of the approximation, exemption from meshing, and higher convergence rate make
the mesh-free methods attractive alternative numerical techniques for nonlinear analysis of
industrial applications. Recently, several advances have been made to enhance the computational
efficiency [6-9].

Most mesh-free methods have been developed for two- and three-dimensional solid applications.
Several mesh-free shells have also been proposed in the content of geometrically nonlinear
analysis of Kirchhoff shell [10] and Mindlin shell [11] using total Lagrangian formulations. The
total Lagrangian formulation has found wide applications in problems involving geometrically
non-linearity and elastic stability [12]. The updated Lagrangian formulation may be particularly
useful for shell analysis involving both geometrical and material non-linearity. The development
of mesh-free methods to general nonlinear shell problems still remains one of the challenging
topics in the mesh-free method today.

The objective of thiswork isto develop a mesh-free shell for the general industrial applications
with desired accuracy and wide applicabilities. In this work, two projection methods are

devel oped to generate the shell mid-surface using the moving-least-squares approximations. The
higher-order and smoothness properties of the mesh-free approximation provide a better fit to the
real shell geometry. A co-rotational, updated Lagrangian procedure is presented to handle
arbitrarily large rotations with moderate strain responses of the shell structures. A local boundary
integration method in conjunction with the selective reduced integration method is introduced to
enforce the linear exactness and relieve shear locking.
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The outline of this paper is asfollows. In Section 2, the mesh-free shell surface representation is
described. Section 3 presents the updated Lagrangian formulation and the underlying co-
rotational procedure for geometrical and material nonlinear shell analysis. In Section 4,
numerical examples are given. Both static and dynamic examples are presented.

2. Mesh-free Shell Surface Representation

Surface reconstruction from disorganized nodesis very challenging in three dimensions. The
problemisill posed, i.e., thereis no unique solution. Lancaster et a. [13] first proposed a fast
surface reconstruction using moving least squares method. Their approach was then applied to
the computational mechanics under the name ‘ mesh-free method’. Implicitly, the mesh-free
method uses a combination of smooth basis functions (primitives) to find a scalar function such
that all data nodes are close to an iso-contour of that scalar function in a global sense. In reality,
the shell surface construction using the 3D mesh-free method isinadequate. Thisis because the
topology of the real surface can be very complicated in three dimensions. Without the
information on the ordering or connectivity of nodes, the reconstructed surface will not be able to
represent shell intersections, exterior boundaries and shape corners.

In our development of mesh-free shells, we assume that a shell surface is described by afinite
element mesh. This can be easily accomplished by converting a part of shell finite elementsinto
mesh-free zone. With the connectivity of nodes provided by the finite element mesh, a shell
surface can be reconstructed with mesh-free interpolation from the nodal positions

X =¥, (X)X, (1)

where X, isthe position vector of the finite element node on the shell surface and ‘?’, (X) isthe

mesh-free shape function. In the above surface representation, a 3D arbitrary shell surface needs
to be projected to a 2D plane. We propose two approaches for the projection of mesh-free shell
surface:

(1) Global parametric representation: The whole shell surface is projected to a parametric plane
and the global parametric coordinates are obtained with a parameterization algorithm from the
patch of finite elements.

(2) Local projection representation: A local area of the shell is projected to a plane based on the
existing element where the evaluated point is located.

Global Parametric Approach

In the global approach, a mesh-free zone with a patch of finite elements is mapped onto a
parametric plane with an angle-based triangular flattening algorithm [14], (see Figure 1). The
idea of this agorithm is to compute a projection that minimizes the distortion of the FE mesh
angles. The mesh-free shape functions are defined in this parametric domain and given by

¥, (X) =", (&7) @)

where (£,7) isthe parametric coordinates corresponding to a point X.
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Projection

Figure 1: Mesh-free shell global approach

Local Projection Approach

Different from the parameterization algorithm that constructs the surface globally, we reconstruct
the surface locally by projecting the surrounding nodes onto the element. In the local projection
method, nodes in elements neighboring the element where the evaluated point is located (for
example, the element i in Figure 2) are projected onto the plane where the element defines (the
“M-plane” in Figure 2). In thisfigure, (X, y,2)i isaloca system defined for each projected plane
and (X,Y,2) isanodal coordinate system defined for each node where z istheinitial averaged
normal direction.

Figure 2: Mesh-free shell local projection

The mesh-free shape functions are then defined with those locally projected coordinates of the
nodes

¥ (X) =Y (% 9) ©)
However, the shape functions obtained directly above are non-conforming, i.e.

¥ (X J )|M-plane 7 (X J )|N-plane (4)
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When the shell structure degenerates to a plate, the constant stress condition cannot be recovered.
To remedy this problem, an area-wei ghed smoothing across different projected planesis used to
obtain the conforming shape functions that are given by

NIE
o > ¥ (%, 51)A
\PI (X) = \PI ()2’ 9) == NIE (5)

EA

where NIE is the number of surrounding projected planes that can be evaluated at point X, A is
the area of the element i, and (X;, V;) isthelocal coordinates of point X in the projected planei.

With this smoothing technique, we can prove that the modified shape functions satisfy at |east
the partition of unity property in the general shell problems. This property isimportant for the
shell formulation to preserve the rigid-body trandlation.

When the shell degeneratesto a plate, we can aso prove that the shape functions obtained from
this smoothing technique will meet the n-th order completeness condition as

DL )Xy X3 X5 = X X) X3, i+ j+k=n (6)

1=1

Thisisanecessary condition for the plate to pass the constant bending patch test.

3. Updated L agrangian Formulation and Co-rotational Procedure

The mesh-free shell formulation is based on the Mindlin-Reissner plate theory, thus the geometry
and kinematical fields of the shell can be described with the reference surface and fiber direction.
The modified Mindlin-Reissner assumption requires that the motion and displacement of the
shell are linear in the fiber direction. Assume that the reference surface is the mid-surface of the
shell, the global coordinates and displacements at an arbitrary point within the shell body are
given by

X=X+¢—=V; @)

U (8)

where X and U are the position vector and displacement of the reference surface, respectively.
V; isthefiber director and U is the displacement resulting from the fiber rotation (see Figures 3

and 4). h isthe length of the fiber.
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Figure 3: Geometry of a shell. Figure 4: Deformation of a shell.

With the mesh-free approximation, the motion and displacements are given by

NP __ NP __ ;h
X(fﬂ,g) = 7(5,77) + V(fiﬂ,g) = Z\PI (5,77))9 + Z\PI (5!77)7'\/& (9)
=1 =1

U(f,ﬂ,g) = U(f’ﬂ) + U(f,ﬂ, ;) = Z\i}l (5177)U| + Z\i}l (6177)%[_ V2I Vll ]{ZI } (10)

where x, and u, arethe global coordinates and displacements at mesh-free node | ,
respectively. V,, isthe unit vector of the fiber director and V,,, V,, arethe base vectors of the
nodal coordinate system at node | . ¢, and S, arethe rotations of the director vector V,, about
the V,, and V,, axes. h, isthethickness. The variables with a superscripted bar refer to the
shell mid-surface. ¥, isthe 2D mesh-free shape functions constructed based on one of the two

mesh-free surface representations described in the previous section, with (£,7) either the
parametric coordinates or local coordinates of the evaluated point.

The loca co-rotational coordinate system (X, y, Z ) isdefined at each integration point on the
shell reference surface, with X and § tangent to the reference surface and Z in the thickness
direction (see Figure 5). The base vectors are given as

~ X ~
el = —'é: e3 =
4

Pl

In order to describe the fiber rotations of a mesh-free node in a shell, we introduce a nodal
coordinate system whose three base vectors are V;, V, and V;, see Figure 5, where V; isthe

fiber director at the nodeand V,, V, are defined asfollows

XXX, A
— e, =e;X%Xe (11)
e x|

XXV,
P Rx V|’

V, =VyxV, (12)
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The rotation of the fiber director is then obtained from the global rotations:

{“}:Rﬂm, A0=[r6, A6, A6 (13)
2

B

Figure 5: Local co-rotational and nodal coordinate systems.

In the local co-rotational coordinate system, the motion and displacements are approximated by
the mesh-free shape functions

NP Y

K=V K+ 2y, (14)
=1 o 2

N NP~hI[A ~ 1

U= YU+ ¥ —|-Va Vi (15)
=1 o 2 B

=2.8Md,, #=c¥Bd, =}Bid (16
| [ '

where the smoothed strain operators are calculated by averaging the consistent strain operators
over an area around the evaluated point

.(.)—%lemd/x é?(x.)%jgléFdA é?(xL>=%jQLéfdA (17)

with
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[~ h h
\IJI X 0 O - ‘]1 1\IJI 2| V2x| ‘]1 1\IJI 2| lel
A ~ h - h, -
B'=| 0 ¥, 0 I3y, 2'v2y| IZY, 2'v1y| (183)
F 0P 0 —ahp Ny Sy hy g2 by 4 Ty hy
Y I.x — Y23 |7 2xI 1351 5 2y 2311 75 Vi +Ji3T 5 'yl

[ ~ h ~ h
0 00O -Y¥ ?Ivle ¥, ?'lel
A = h ~ h .~
B’=|0 0 0O —\Pllyg'vzy, qq,yE'vly, (18b)
h, h 3 ~ h s ~ h
000 lIll Y 9 VZXI _lP ?IVZyI lPI,y ?Ilel +¥) 7|V1yl
| 5 hy g ho g h h -
- 00 ¥, -z 2'V2y|—J231‘P| > Vas IBY, 2v1y|+J ¥ > Viz 59
| = _~ h ~ h ~ h ~ i~ h N C
00 ¥y -Jxn \P 2|V2x| Jis lP 2|V22| Ja3 lP 2|V1xl +J5Y, Elvm

and J~* istheinverse of the Jacobian matrix at the integration point. The local degrees-of-
freedom are

al=[axl ayl U, o ,Bl]T (19)

The stiffness matrices and load vectors in the local co-rotational coordinate system are defined as
follows. The material stiffness matrix is

KM=KMD+KP +KS, (20)
with
Ry =[ BrcmByde, Kb =[ BY'¢’C'Bjd,  Kj =[ Bf cBlde (21)
The geometric stiffness matrix is
KT =B 6uB,de (22)

with
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o

kK =

¥k
0

0

0 0 _( ~| ),k hEI\?zm ( ~| ),k h?llel
Ty 0 (), 0 ()00, @)
0 qjl ko (gqﬂ ),k %sz (ﬁl ),k h?I\?lzl

Decomposing the above into constant and linear terms in the function of ¢

By =Bq + By
where

_\Tl R
Ik k3 T 2
~ ~ 4~ h
Bkl =/ 0 ‘P| k 0 _Jk?l,\Pl 7'
o 0 ¥, —Jk—gffqh—'
| 2

_ _ h
000 -%, Vo Wy

- ~ h o~ -

By =[0 0 O —\P|,k7lvzy| \Pl,k

h

000 -¥, 2V, ¥,

the geometric stiffness matrix can be written as

~ .~ hy o~
V2x| ‘]k%\}ll _Ilel

V2y| J IZI?PI ?Ivlyl
h,

V22I J k_élyl 7V12I

(24)

(25a)

(25b)

5 0T~ & 0T o & 1T o & 1T pon &
K3 =IQB|<| leBlng"‘jQBlg éalelleQ""[QBlb &MBBdQﬁQBé {?64BhdQ  (25)

Theinternal nodal force vector is

F = [ B 6dQ+ [ (B 6dQ+ [ Bf' 6dQ

The above integrals are calculated with the local boundary integration method [15]. Each

(26)

background finite element is divided into four integration zones, shown as €, in Figure 6. In

order to avoid shear locking in the analysis of thin shells, the shear stiffness (third term in Eq.
(20)), should be under-integrated by using one integration zone in each background element (€,

in Figure 6). Accordingly, the co-rotational coordinate systems are defined separately at the

center of each integration zone, as shown in Figure 5.
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Figure 6: Integration scheme for mesh-free shells.

The use of the updated Lagrangian formulation implies that the reference coordinate system is
defined by the co-rotational system in the configuration at timet. Therefore, the local stiffness
matrices as well as force and displacement vectors referred to this coordinate system must be
transformed to the global coordinate system prior to assemblage.

4. Numerical Examples

Shallow Shell Cap Under Inflation

A double curved shallow shell cap isinflated by pressure loading. The geometric dimension of
the shell cap is 32mm long, 24mm wide and 24mm deep. Its thicknessis 2mm. The material is
elastic, with Y oung’s modulus of 210.0GPa and Poisson’ sratio of 0.3. The deformation of the
shell cap under inflation is dominated by membrane strain. This problem is used to test the
membrane property of the developed implicit mesh-free shells.

The shell cap isdiscretized by 8x6 elements, as shown in Figure 7. For this rather coarse mesh,
the mesh-free local projection method can run up to 8.00ms and the mesh-free global approach
can get a converged solution up to 7.62ms with a normalized support size of 1.10. The assumed
stresg/strain shell element (shell type 16) diverges at 7.79ms. The deformations given by the
mesh-free shells and the finite element shell agree very well (see Figure 8).
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SHALLOW CAP INFLATION
Time = [

Shell Type:

—A-Mesh—free: Local Proj.
_Mesh-free: Global Appr.

y ><
/ —-Shell Type 18

Z-displacement
‘\

)ad

Figure 7: Numerical model for shallow shell Figure 8: Displacement of center point on the
cap. shell cap.

Springback Simulation

A springback simulation specified as Numisheet 93 is performed. A strip of mild steel sheet is
subjected to forming process then rel eased from the constraint of the die, punch and holder.

Due to symmetry, only half of the problem domain is modeled in the simulation (see the |eft
picture in Figure 9). The workpiece with dimensions of 175.0mm by 17.5mm and thickness of
0.5mm is discretized to one mesh-free zone with 715 nodes, which will go through large changes
of shape and deformation, and two finite element zones with total 648 elements, as shown in the
right picturein Figure 9. The material for the workpiece is modeled by transversely anisotropic
elasto-plastic material (material type 37).

The forming processis simulated by an explicit analysis with atermination time of 70ms. The
spingback processis simulated by an implicit analysis to a termination time of 350ms. With a
normalized support size of 1.10, the two mesh-free shells can compl ete the springback
simulation with 5 time steps. Figure 10 demonstrates the deformations and contours of the
effective stress at four times: 70ms, 140ms, 230ms, and 350ms. The fina shape of the workpiece

after the springback is shown in Figure 11. The springback angleis 16.40°, which is close to the
experimental value of 17.10°. The time history of the springback angle is shown in Figure 12.
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Figure 9: Problem description of springback simulation.
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Figure 10: Contours of effective stress at different stages of springback.
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Figure 11: Final shape of workpiece after
springback. Figure 12: Change of angle of the workpiece.
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Boxbeam Simulation

Thisisaclassical impact problem to measure the crushing forces of the hollow structures. A
steel boxbeam with an initial cross section 38.1 cm by 50.8 cm and an initial height 203 cmis
subjected to an impact force as shown in Figure 13. The initial thickness of the cross section is
0.914mm. The impact force is prescribed by arigid block with a constant velocity 1.28 m/s. Due
to symmetry, only one quarter of the model is analyzed. The materia properties of the boxbeam
aregivenin Table 1.

Figure 13: Boxbeam model

Table 1.
Mass density Young's Poission’s Yield stress Tangent Hardening
modulus ratio modulus parameter
7.83e-9 2.1letb 0.3 206.0 206.0 1.0

Explicit time integration method with row-sum mass matrix is employed. A comparison between
the numerical result using two mesh-free methods and two finite element methods (element type
8 and element typel6) are given.

The comparison of crushing forceisdisplayed in Figure 14. All four numerical methods give
similar results. Four consecutive deformed geometries are plotted in Figure 15. The dynamic
plastic bulking pattern obtained from the mesh-free method agrees well with the finite elements
result.
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Figure 14: Comparison of crushing force
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Figure 15: Contours of effective stress at different deformed stage.
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