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Abstract 
 
A mesh-free formulation based on the Mindlin-Reissner shell theory for geometrical and material nonlinear analysis 
of shells is presented. In this mesh-free formulation, two projection methods are developed to generate the shell 
surface using the Lagrangian mesh-free interpolations. The updated Lagrangian theory underlying the co-rotational 
procedure is adopted for the local strain, stress and internal force updating. A local boundary integration method in 
conjunction with the selective reduced integration method is introduced to enforce the linear exactness and relieve 
shear locking. Both nonlinear static and dynamic analysis of shell structures with finite rotations are considered. 
Several numerical examples are presented to demonstrate the accuracy and applicability of the proposed 
formulation. 

 
1. Introduction 

 
Recent developments in mesh-free methods provide an additional dimension to computational 
mechanics [1-5]. Those methods do not rely on the conventional grid approach to define 
approximation functions. In comparison with the conventional finite element methods, the 
smoothness of the approximation, exemption from meshing, and higher convergence rate make 
the mesh-free methods attractive alternative numerical techniques for nonlinear analysis of 
industrial applications. Recently, several advances have been made to enhance the computational 
efficiency [6-9]. 

Most mesh-free methods have been developed for two- and three-dimensional solid applications. 
Several mesh-free shells have also been proposed in the content of geometrically nonlinear 
analysis of Kirchhoff shell [10] and Mindlin shell [11] using total Lagrangian formulations. The 
total Lagrangian formulation has found wide applications in problems involving geometrically 
non-linearity and elastic stability [12]. The updated Lagrangian formulation may be particularly 
useful for shell analysis involving both geometrical and material non-linearity. The development 
of mesh-free methods to general nonlinear shell problems still remains one of the challenging 
topics in the mesh-free method today.  

The objective of this work is to develop a mesh-free shell for the general industrial applications 
with desired accuracy and wide applicabilities. In this work, two projection methods are 
developed to generate the shell mid-surface using the moving-least-squares approximations. The 
higher-order and smoothness properties of the mesh-free approximation provide a better fit to the 
real shell geometry. A co-rotational, updated Lagrangian procedure is presented to handle 
arbitrarily large rotations with moderate strain responses of the shell structures. A local boundary 
integration method in conjunction with the selective reduced integration method is introduced to 
enforce the linear exactness and relieve shear locking.  
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The outline of this paper is as follows. In Section 2, the mesh-free shell surface representation is 
described. Section 3 presents the updated Lagrangian formulation and the underlying co-
rotational procedure for geometrical and material nonlinear shell analysis. In Section 4, 
numerical examples are given. Both static and dynamic examples are presented.  

2. Mesh-free Shell Surface Representation  
 

Surface reconstruction from disorganized nodes is very challenging in three dimensions. The 
problem is ill posed, i.e., there is no unique solution. Lancaster et al. [13] first proposed a fast 
surface reconstruction using moving least squares method. Their approach was then applied to 
the computational mechanics under the name ‘mesh-free method’. Implicitly, the mesh-free 
method uses a combination of smooth basis functions (primitives) to find a scalar function such 
that all data nodes are close to an iso-contour of that scalar function in a global sense. In reality, 
the shell surface construction using the 3D mesh-free method is inadequate. This is because the 
topology of the real surface can be very complicated in three dimensions. Without the 
information on the ordering or connectivity of nodes, the reconstructed surface will not be able to 
represent shell intersections, exterior boundaries and shape corners. 

In our development of mesh-free shells, we assume that a shell surface is described by a finite 
element mesh. This can be easily accomplished by converting a part of shell finite elements into 
mesh-free zone. With the connectivity of nodes provided by the finite element mesh, a shell 
surface can be reconstructed with mesh-free interpolation from the nodal positions 

 II xXx )(
~Ψ=  (1) 

where Ix  is the position vector of the finite element node on the shell surface and )(
~

XIΨ  is the 
mesh-free shape function. In the above surface representation, a 3D arbitrary shell surface needs 
to be projected to a 2D plane. We propose two approaches for the projection of mesh-free shell 
surface: 

(1) Global parametric representation: The whole shell surface is projected to a parametric plane 
and the global parametric coordinates are obtained with a parameterization algorithm from the 
patch of finite elements. 

(2) Local projection representation: A local area of the shell is projected to a plane based on the 
existing element where the evaluated point is located. 

Global Parametric Approach 

In the global approach, a mesh-free zone with a patch of finite elements is mapped onto a 
parametric plane with an angle-based triangular flattening algorithm [14], (see Figure 1). The 
idea of this algorithm is to compute a projection that minimizes the distortion of the FE mesh 
angles. The mesh-free shape functions are defined in this parametric domain and given by 

 ),(
~

)(
~ ηξII ΨΨ =X  (2) 

where ),( ηξ  is the parametric coordinates corresponding to a point X. 
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Figure 1: Mesh-free shell global approach 

Local Projection Approach 

Different from the parameterization algorithm that constructs the surface globally, we reconstruct 
the surface locally by projecting the surrounding nodes onto the element. In the local projection 
method, nodes in elements neighboring the element where the evaluated point is located (for 
example, the element i in Figure 2) are projected onto the plane where the element defines (the 
“M-plane” in Figure 2). In this figure, ( zyx ˆ,ˆ,ˆ )i is a local system defined for each projected plane 
and ( zyx ,, )I is a nodal coordinate system defined for each node where z  is the initial averaged 
normal direction.  
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Figure 2: Mesh-free shell local projection 

The mesh-free shape functions are then defined with those locally projected coordinates of the 
nodes 

 )ˆ,ˆ()( yxII ΨΨ =X  (3) 

However, the shape functions obtained directly above are non-conforming, i.e. 

 
plane-Nplane-M

)()( JIJI XX ΨΨ ≠  (4) 
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When the shell structure degenerates to a plate, the constant stress condition cannot be recovered. 
To remedy this problem, an area-weighed smoothing across different projected planes is used to 
obtain the conforming shape functions that are given by 
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where NIE is the number of surrounding projected planes that can be evaluated at point X, iA  is 

the area of the element i, and )ˆ,ˆ( ii yx  is the local coordinates of point X in the projected plane i.  

With this smoothing technique, we can prove that the modified shape functions satisfy at least 
the partition of unity property in the general shell problems. This property is important for the 
shell formulation to preserve the rigid-body translation. 

When the shell degenerates to a plate, we can also prove that the shape functions obtained from 
this smoothing technique will meet the n-th order completeness condition as 

 nkjiXXXXXX kji
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          ,)(
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321

1
321XΨ  (6) 

This is a necessary condition for the plate to pass the constant bending patch test. 

 
3. Updated Lagrangian Formulation and Co-rotational Procedure 

 
The mesh-free shell formulation is based on the Mindlin-Reissner plate theory, thus the geometry 
and kinematical fields of the shell can be described with the reference surface and fiber direction. 
The modified Mindlin-Reissner assumption requires that the motion and displacement of the 
shell are linear in the fiber direction. Assume that the reference surface is the mid-surface of the 
shell, the global coordinates and displacements at an arbitrary point within the shell body are 
given by 

 32
Vxx

hζ+=  (7) 

 Uuu
2

hζ+=  (8) 

where x  and u  are the position vector and displacement of the reference surface, respectively. 

3V  is the fiber director and U  is the displacement resulting from the fiber rotation (see Figures 3 

and 4). h is the length of the fiber. 
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Figure 3: Geometry of a shell.  
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Figure 4: Deformation of a shell. 

 

With the mesh-free approximation, the motion and displacements are given by 
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where Ix  and Iu  are the global coordinates and displacements at mesh-free node I , 

respectively. I3V  is the unit vector of the fiber director and I1V , I2V  are the base vectors of the 

nodal coordinate system at node I . Iα  and Iβ  are the rotations of the director vector I3V  about 

the I1V  and I2V  axes. Ih  is the thickness. The variables with a superscripted bar refer to the 

shell mid-surface. IΨ~  is the 2D mesh-free shape functions constructed based on one of the two 

mesh-free surface representations described in the previous section, with ( )ηξ ,  either the 
parametric coordinates or local coordinates of the evaluated point. 

The local co-rotational coordinate system ( x̂ , ŷ , ẑ ) is defined at each integration point on the 
shell reference surface, with x̂  and ŷ  tangent to the reference surface and ẑ  in the thickness 
direction (see Figure 5). The base vectors are given as 

 132
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In order to describe the fiber rotations of a mesh-free node in a shell, we introduce a nodal 
coordinate system whose three base vectors are 1V , 2V  and 3V , see Figure 5, where 3V  is the 

fiber director at the node and 1V , 2V  are defined as follows 
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The rotation of the fiber director is then obtained from the global rotations:  
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Figure 5: Local co-rotational and nodal coordinate systems. 

In the local co-rotational coordinate system, the motion and displacements are approximated by 
the mesh-free shape functions 
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The Lagrangian smoothed strains [8] are given by 
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where the smoothed strain operators are calculated by averaging the consistent strain operators 
over an area around the evaluated point 
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with 
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and 1−J  is the inverse of the Jacobian matrix at the integration point. The local degrees-of-
freedom are 

 [ ]TIIzIyIxII uuu βαˆˆˆˆ =d  (19) 

The stiffness matrices and load vectors in the local co-rotational coordinate system are defined as 
follows. The material stiffness matrix is 

 sbmM ˆˆˆˆ
IJIJIJIJ KKKK ++=  (20) 

with 
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The geometric stiffness matrix is 

 ∫=
Ω

Ωσ dlJkl
T
kIIJ BB ~ˆ~ˆ GK  (22) 

with 
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Decomposing the above into constant and linear terms in the function of ζ  

 10 ~~~
kIkIkI BBB ζ+=  (24) 

where 
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the geometric stiffness matrix can be written as 

 ∫∫∫∫ +++=
Ω
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The internal nodal force vector is 

 ΩΩΩ
ΩΩΩ

ddζd
T

I

T

I

T

II ∫∫∫ ++= σBσBσBF ˆ~ˆ~ˆ~ˆ sbmint  (26) 

The above integrals are calculated with the local boundary integration method [15]. Each 
background finite element is divided into four integration zones, shown as lΩ  in Figure 6. In 

order to avoid shear locking in the analysis of thin shells, the shear stiffness (third term in Eq. 
(20)), should be under-integrated by using one integration zone in each background element ( LΩ  
in Figure 6). Accordingly, the co-rotational coordinate systems are defined separately at the 
center of each integration zone, as shown in Figure 5. 
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Figure 6: Integration scheme for mesh-free shells. 

The use of the updated Lagrangian formulation implies that the reference coordinate system is 
defined by the co-rotational system in the configuration at time t. Therefore, the local stiffness 
matrices as well as force and displacement vectors referred to this coordinate system must be 
transformed to the global coordinate system prior to assemblage.  

4. Numerical Examples 
 

Shallow Shell Cap Under Inflation 

A double curved shallow shell cap is inflated by pressure loading. The geometric dimension of 
the shell cap is 32mm long, 24mm wide and 24mm deep. Its thickness is 2mm. The material is 
elastic, with Young’s modulus of 210.0GPa and Poisson’s ratio of 0.3. The deformation of the 
shell cap under inflation is dominated by membrane strain. This problem is used to test the 
membrane property of the developed implicit mesh-free shells. 

The shell cap is discretized by 68 ×  elements, as shown in Figure 7. For this rather coarse mesh, 
the mesh-free local projection method can run up to 8.00ms and the mesh-free global approach 
can get a converged solution up to 7.62ms with a normalized support size of 1.10. The assumed 
stress/strain shell element (shell type 16) diverges at 7.79ms. The deformations given by the 
mesh-free shells and the finite element shell agree very well (see Figure 8). 
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Figure 7: Numerical model for shallow shell 
cap. 

 

Figure 8: Displacement of center point on the 
shell cap. 

 

Springback Simulation 

A springback simulation specified as Numisheet 93 is performed. A strip of mild steel sheet is 
subjected to forming process then released from the constraint of the die, punch and holder. 

Due to symmetry, only half of the problem domain is modeled in the simulation (see the left 
picture in Figure 9). The workpiece with dimensions of 175.0mm by 17.5mm and thickness of 
0.5mm is discretized to one mesh-free zone with 715 nodes, which will go through large changes 
of shape and deformation, and two finite element zones with total 648 elements, as shown in the 
right picture in Figure 9. The material for the workpiece is modeled by transversely anisotropic 
elasto-plastic material (material type 37). 

The forming process is simulated by an explicit analysis with a termination time of 70ms. The 
spingback process is simulated by an implicit analysis to a termination time of 350ms. With a 
normalized support size of 1.10, the two mesh-free shells can complete the springback 
simulation with 5 time steps. Figure 10 demonstrates the deformations and contours of the 
effective stress at four times: 70ms, 140ms, 230ms, and 350ms. The final shape of the workpiece 

after the springback is shown in Figure 11. The springback angle is o40.16 , which is close to the 

experimental value of o10.17 . The time history of the springback angle is shown in Figure 12. 
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Figure 9: Problem description of springback simulation. 

 

Figure 10: Contours of effective stress at different stages of springback. 

 

o40.16

 

Figure 11: Final shape of workpiece after 
springback. 

 

Figure 12: Change of angle of the workpiece. 
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Boxbeam Simulation 

This is a classical impact problem to measure the crushing forces of the hollow structures. A 
steel boxbeam with an initial cross section 38.1 cm by 50.8 cm and an initial height 203 cm is 
subjected to an impact force as shown in Figure 13. The initial thickness of the cross section is 
0.914mm. The impact force is prescribed by a rigid block with a constant velocity 1.28 m/s. Due 
to symmetry, only one quarter of the model is analyzed. The material properties of the boxbeam 
are given in Table 1. 

 

Figure 13: Boxbeam model 

Table 1. 

Mass density Young’s 
modulus 

Poission’s 
ratio 

Yield stress Tangent 
modulus 

Hardening 
parameter 

7.83e-9 2.1e+5 0.3 206.0 206.0 1.0 

  

Explicit time integration method with row-sum mass matrix is employed. A comparison between 
the numerical result using two mesh-free methods and two finite element methods (element type 
8 and element type16) are given. 

The comparison of crushing force is displayed in Figure 14.  All four numerical methods give 
similar results. Four consecutive deformed geometries are plotted in Figure 15. The dynamic 
plastic bulking pattern obtained from the mesh-free method agrees well with the finite elements 
result. 
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Figure 14: Comparison of crushing force 

  

 

 

Figure 15: Contours of effective stress at different deformed stage. 
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