x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

An Eulerian Finite Element Model of the Metal Cutting Process

The Eulerian element formulation was employed in the modeling of the orthogonal metal cutting process of commercial purity copper. The constitutive material models elastic-plastic hydrodynamic and Johnson-Cook, were utilized in modeling the workpiece behavior. The capabilities of each model to replicate the experimental chip geometry, stress and strain distributions, and cutting forces, were investigated. The numerical strain distributions, were in good agreement with the experimental strain distribution. The maximum strains of ε p = 8.3 and ε p = 5.6 for the Johnson-Cook material and hydrodynamic material, respectively, occurred in the tool tip region, and were in good correlation with the experimental strain of ε p = 8.1 at this location. The experimental and numerical distributions, all predicted strains of approximately ε p = 3.5 to 3.6 beneath the machined surface and adjacent to the rake face. The stress distributions in both of the investigated materials were noticeable different. The Johnson-Cook model showed a stress increase of up to 425 MPa in the primary deformation zone, while the hydrodynamic model predicted increased stresses of 380 MPa in the secondary deformation zone. The hydrodynamic stress distribution was more consistent with experimental findings, which similarly showed a stress increase, up to 360 MPa, in the secondary deformation zone. The maximum stress in the hydrodynamic material (410 MPa) and in the Johnson-Cook material (438 MPa) were located at the tool tip, and showed good correlation to the maximum experimental stress of 422 MPa, also occurring at the tool tip. The sizes of both the primary deformation zone (350 μm), and the secondary deformation zone (50 μm) predicted by the hydrodynamic and Johnson-Cook material models were in agreement with the experimental observations. The steady state cutting force prediction of the hydrodynamic material was 1332 N, and was within 13% of the experimental findings. The numerical–experimental correlations indicate the Eulerian finite element approach is an effective way of modeling the metal cutting process.

application/pdf 09-2.pdf — 490.1 KB