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Abstract 

An existing constitutive model applicable to aluminum foam was implemented in LS-DYNA. One main objective in 
the present project was to implement a model that could handle fracture in the foam. Therefore, two simple fracture 
criteria were also implemented in the model. Additionally, the possibility to include initial statistical variation of the 
foam density was incorporated in the model so that inhomogeneities in the foam properties could be represented. 
Foam subjected to both simple and more complex loading conditions where fracture was of varying importance 
have been analyzed, and some representative results and comparisons with experimental data are presented. The 
implemented model is efficient and robust, and gives good results. The model including one of the fracture criteria 
and without the possibility of statistical variation of density is at present available in version 970 of LS-DYNA. 

Introduction 

Energy absorbers are often used in cars, trains, buses etc. to protect passengers and the structure 
during impact. Due to its excellent energy-absorbing capability, aluminum foam may be used in 
such devices. As vehicle design requires numerical simulations by finite element programs such 
as LS-DYNA (Hallquist 1998), it is important to have good constitutive models also for foams. 
Hanssen et al. (2002) concluded that the different models for metallic foams available in LS-
DYNA in 2002 were not able to predict the behavior of different experimental verification tests. 
One of the reasons for the discrepancy between experimental and numerical results was the lack 
of a suitable fracture criterion.  

Several challenges exist in the material modeling of foam since it is a cellular material. Contrary 
to metals, which sustain the same volume when loaded, the volume changes for foams during 
loading. The material model should therefore include the possibility of failure under hydrostatic 
loading conditions. Another important characteristic of aluminum foam is the inhomogeneity of 
the pores, which are of different sizes and are not distributed evenly. A few approaches to model 
the inhomogeneities of foam can be found in the literature (Daxner et al. 1999, Gradinger and 
Rammerstorfer 1999, Meguid et al. 2002).  

Several constitutive models for foams exist in the literature (Schreyer et al. 1994, Zhang et al. 
1997, Ehlers 1999, Deshpande and Fleck 2000, Miller 2000). Some of them are quite simple; 
others are more complicated with several material parameters. There are also few or no 
recommendations on how to include the uneven distribution of pores and fracture in the models.  

The yield criterion presented by Deshpande and Fleck (2000) can be regarded as an extension of 
the von Mises yield criterion, where the hydrostatic stresses are incorporated in the equivalent 
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stress. Because of its simplicity, the Deshpande-Fleck model was chosen for implementation in 
LS-DYNA. Furthermore, it was decided to incorporate initial statistical variation of density and 
different fracture criteria. Two simple fracture criteria were added to the model, and including an 
initial statistical variation of foam density enabled modeling of inhomogeneities in the foam.  

The main objective of the current paper is to present the model (Section 2) and the 
implementation procedure (Section 3) in detail. Section 4 and 5 describes shortly how statistical 
variation of density and fracture was included. Several numerical analyses of verification tests on 
Hydro aluminum foam has been performed and compared with experimental results from 
Hanssen et al. (2002). The results from these tests have been reported by Reyes et al. (2003), but 
some of the findings are presented in Section 6 of the present paper. 

Constitutive Model 

The constitutive model presented by Deshpande and Fleck (2000) is isotropic and continuum-
based, and the yield function includes a hydrostatic stress term to take volume changes in the 
foam into account. A thorough presentation of the model and the basis for the implementation 
are given in the following. 

It is assumed that the elastic strains are small compared with the plastic strains, and an additive 
decomposition of the rate-of-deformation tensor D  into elastic and plastic parts is adopted 

 e p= +D D D  (1) 

where the indices e and p denote the elastic and plastic parts, respectively. The hypoelastic 
relation expresses the Jaumann rate J∇σ  of the Cauchy stress tensor σ  in terms of the elastic rate-
of-deformation tensor eD  in the form  

 ,dev( ) 2J e eKtr G∇ = +σ D I D  (2) 

where K is the bulk modulus, G is the shear modulus, I  is the second-order unit tensor, and 
,deveD  is the deviatoric part of the elastic rate-of-deformation tensor, 

 ( ),dev 1

3
e e etr= −D D D I  (3) 

The Jaumann rate of the Cauchy stress tensor is given as  

 J TD

Dt
∇ = − ⋅ − ⋅σσ W σ σ W  (4) 

In Eqn. (4), /D Dtσ  is the material time derivative of the Cauchy stress tensor, and W  is the spin 
tensor.  

The yield function Φ  is defined by  

 ˆ 0YσΦ = − ≤  (5) 
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and the yield stress Y can be expressed as 

 ( )ˆ
pY Rσ ε= +  (6) 

where pσ  is the foam plateau stress, ( )ˆR ε  represents the strain hardening and ε̂  is the equivalent 
strain. The equivalent stress, σ̂ , is given by (Deshpande and Fleck 2000) 

 
( )

2 2 2 2

2

1
ˆ

1 / 3
e mσ σ α σ

α
 = +  + 

 (7) 

where eσ  is the von Mises effective stress, and mσ  and devσ  are respectively the mean and 
deviatoric stresses 

 dev dev3
:

2eσ = σ σ , ( )m

1
= tr

3
σ σ , ( )dev

m

1

3
tr σ= − = −σ σ σ I σ I  (8) 

The parameter α  defines the shape of the yield surface.  

The plastic rate-of-deformation and the equivalent strain rate are defined by the associated flow 
rule (Lemaitre and Chaboche 1990) 

 p λ ∂Φ=
∂

D
σ

&  (9) 

 ˆ
R

ε λ λ∂Φ= − =
∂

& & &  (10) 

where λ&  is the plastic rate parameter. The loading-unloading conditions can be stated as  

 0,    0,    0λ λΦ ≤ ≥ Φ ≡& &  (11) 

which assure that (1) the stress state lies on or within the yield surface, (2) the plastic rate 
parameter is non-negative, and (3) the stress lies on the yield surface during plastic loading. 

The plastic strain rate can be expressed as 

 ˆ ˆp e m

e m

σ σλ ε ε
σ σ

∂ ∂∂Φ ∂Φ ∂Φ= = +
∂ ∂ ∂ ∂ ∂

D
σ σ σ

& &&  (12) 

where, 
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ˆ1 / 3
e

e

σ
σ σα
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∂ +

,         
( )

2

2 ˆ1 / 3
m

m

σα
σ σα
∂Φ =
∂ +

 (13) 
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e
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σ

∂ = =
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σ
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1

3
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I

σ
 (14) 
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Here, n  is the normal vector. 

The von Mises effective plastic strain rate is 

 
( )

p,dev p,dev
2

ˆ2 ˆ:
ˆ3 1 / 3
e

e
e

σεε ε
σ σα

∂Φ≡ = =
∂+

D D
&

&&  (15) 

and the volumetric plastic strain rate is here defined as 

 ( ) ( )
2

p
2

ˆ
ˆ

ˆ1 / 3
m

m
m

tr
σα εε ε
σ σα

∂Φ≡ = =
∂+

D
&

&&  (16) 

It is accordingly possible to split the plastic strain rate into deviatoric and hydrostatic parts in the 
following simple form: 

 p 1

3e mε ε= +D n I& &  (17) 

Combination of the equations above gives the equivalent strain rate ε̂&  expressed explicitly in 
terms of eε&  and mε& : 

 
2

2 22
2

1
ˆ 1

3 e m

αε ε ε
α

    = + +    
     

& & &  (18) 

The yield criterion in Eqn. (5) is used with the following definition of the parameter α  
(Deshpande and Fleck 2000): 

 2 9 (1 2 )

2 (1 )

p

p

να
ν

−=
+

 (19) 

where pν  is the plastic coefficient of contraction. If 2 4.5α = , there will be no lateral plastic 
deformation resulting from uniaxial compression, which means that the measured engineering 
stress is identical to the true stress. The values of 2α  should be limited within the range of 

20 4.5α≤ ≤  to be physically admissible. The upper limit corresponds to zero plastic coefficient 
of contraction, while the lower limit corresponds to the von Mises criterion.  

Numerical Implementation Procedure 

The constitutive equations presented in the previous section have been implemented in the 
explicit finite element program LS-DYNA. The integration algorithm (or stress-update scheme) 
for the rate constitutive equations is developed next. The adopted stress-update algorithm is 
based on the work of Aravas (1987) for pressure-dependent materials, while a general reference 
to Belytschko et al. (2000) is made for more details on stress-update algorithms. 



8th International LS-DYNA Users Conference Material Technology 

 6-15 

Assume that the stress tensor nσ  and the effective plastic strain nε̂  at time nt  have been 
computed, and, in addition, that the rate-of-deformation tensor n+1/2D  and the spin tensor n+1/2W  at 
time n+1/2 n n+1 / 2t t t= + ∆  are known from the finite element solution. The strain increment n+1∆ε  
occurring during the time step n+1 n+1 nt t t∆ = −  is then calculated by 

 n+1 n+1/2 n+1t∆ = ∆ε D  (20) 

and the task is to determine the updated variables n+1σ  and n+1ε̂  at time n+1t .  

A trial stress state is first calculated assuming the increment purely elastic, i.e. (Crisfield 1997, 
Hallquist 1998) 

 ( )T dev
n+1 n n+1 n 1/ 2 n n n 1/ 2 n+1 n+1( ) 2tr t Ktr G+ += + ∆ + + ∆ + ∆σ σ W σ σ W ε I ε   (21) 

The transformation of the stress tensor nσ  at nt  is necessary to correctly account for the rigid 
body rotation of the material during the time step 1nt +∆ . It is then checked if the assumption of an 
elastic time step is correct or if the trial stress leads to plasticity: 

 n+1 n+1
n+1 n+1

n+1 n

ˆ 0 elastic step
ˆ ˆ

tr
tr tr

nYσ
ε ε
 =Φ = − ≤ ⇒ ⇒ 

=

σ σ
 (22) 

 n+1 n+1ˆ 0 plastic step return maptr tr
nYσΦ = − > ⇒ ⇒  (23) 

Here, the trial value of the equivalent stress in the current step, and the yield stress in the 
previous step, can be written as 

 ( ) ( ) ( )2 22
n+1 ,n+1 ,n+12

1
ˆ

1 / 3
tr tr tr

e mσ σ α σ
α

 = +  +
 (24) 

and 

 ( ) ( )n n n
ˆ ˆ

pY Y Rε σ ε= = +  (25) 

For a plastic step, an iterative radial return algorithm is used to re-establish consistency. The 
stress at n+1t  is calculated as 

 ,dev
n+1 n+1 n+1 n 1 n+1 ,n+1 ,n+1 n+1( ) 2 2tr p p tr

m eKtr G K Gε ε+= − ∆ − ∆ = − ∆ − ∆σ σ ε I ε σ I n  (26) 

where ,n+1mε∆  and ,n+1eε∆  are increments of the volumetric and von Mises effective plastic strains, 
respectively. The normal vector n+1n  reads  

 
dev dev,tr
n+1 n+1

n+1 tr
,n+1 ,n+1

3 3

2 2e eσ σ
= =σ σ

n  (27) 

where the latter equality is due to the spherical shape of the flow potential in deviatoric stress 
space (Aravas 1987).  
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Consistency at n+1t  requires that 

 ( ) ( )n+1 n+1 n+1 n+1 n+1
ˆ ˆˆ ˆ0         Y Yσ ε σ εΦ = − = ⇒ =  (28) 

where 

 n+1 n n+1
ˆ ˆ ˆε ε ε= + ∆  (29) 

Here, n+1ε̂∆  is the increment of the equivalent plastic strain. From Eqns. (15), (16), and (28), the 
increments in the deviatoric and volumetric strains can be written as 

 
( )

,n+1
,n+1 n+1 2

n+1

1
ˆ

1 / 3

e
e Y

σ
ε ε

α
∆ = ∆

+
 (30) 

 
( )

2
,n+1

,n+1 n+1 2
n+1

ˆ
1 / 3

m
m Y

σαε ε
α

∆ = ∆
+

 (31) 

where 

 ( )n+1 n+1 n+1
ˆˆ pY Rσ σ ε= = +  (32) 

Projection of n+1σ  onto I and n+1n  makes it possible to divide the stress into a deviatoric and 
hydrostatic parts (Aravas 1987): 

 

( )( )

,n+1

,n+1 ,n+1 ,n 1 ,n+1 2
n+1

2

n+1

ˆ       
ˆ

1
1 / 3
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m
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K

Y
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ε α
α
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 (33) 
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n 1
2

n+1
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1
1 / 3

tr
e

tr
e e e eG

G

Y

σ
σ σ ε σ ε

α

+
+

= − ∆ ⇒ =
∆+

+

 (34) 

The equation that remains to be solved is the yield condition at n+1t : 

 ( ) ( ) ( ) ( )2 22
n+1 n+1 n+1 n+1 ,n+1 ,n+1 n+12

1ˆ ˆ 0
1 / 3 e mY Yε σ σ α σ

α
 Φ ∆ = − = + − =  +

 (35) 

where the unknown quantity is n+1ε̂∆ . Eqn. (35) is solved using Newton’s method, 
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( )
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ˆ

ˆ ˆ ˆ  

k
k
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ε

ε
ε ε δ ε

+

+

Φ
∂Φ Φ = Φ + ∆ = ⇒ ∆ = − ∂∆  ∂Φ 

 ∂∆ 
∆ = ∆ + ∆

 (36) 

and the stress tensor, n+1σ , is then obtained by Eqn. (26). 
( )

n+1
ˆ

k

ε
∂Φ 

 ∂∆ 
 can be derived analytically 

from the yield function, but it is also possible to express it numerically: 

 
( ) ( ) ( 1)

n+1 n+1
( ) ( 1)

n+1 n+1 n+1
ˆ ˆ ˆ

k k k

k kε ε ε

−

−

Φ − Φ∂Φ  ≈ ∂∆ ∆ − ∆ 
 (37) 

Statistical Variation 

The different size and uneven distribution of the pores lead to a density variation in the foam. It 
was attempted to model the variation in properties without modeling the pore structure, but 
instead introducing an initial statistical variation of the material properties. As the material 
properties for foam generally are functions of the foam density, each element can be given a 
different density, and the material parameters can consequently be calculated from the density. A 
hardening model where it is possible to include the variation of foam density was suggested by 
Hanssen et al. (2002), and a slightly modified version of this was used in the implemented model 
(Reyes et al. 2003): 

 ( )
( )2

ˆ 1ˆ ln
ˆ1 /

p p
D D

Y R β
εσ ε σ γ α

ε ε ε

 
 = + = + +
 − 

 (38) 

where, pσ , 2α , γ , β , and Dε  are the material parameters. The material properties, pσ , 2α , γ , 
and β , can be expressed as functions of the foam density (Hanssen et al. 2002): 

 2 0 1
0

1
, , ,

n

f
p

f

C C
ρ

σ α γ
β ρ

  
= +        

 (39) 

where C0, C1, and n are constants. 

The compaction strain Dε  was defined as (Reyes et al. 2003) 

 
2

2
0

9
ln

3
f

D
f

ραε
α ρ

 += −   
 

 (40) 

As the material parameters in the hardening curve can all be considered functions of the foam 
density, a statistical variation of the foam density was introduced, i.e. the mean value and 
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standard deviation must be given as input parameters. In the initialization of the analysis, each 
element is given a foam density with a normal (Gaussian) probability distribution. The material 
parameters are calculated from the density for each element, using Eqns. (39) and (40). A 
function, “Gasdev” (Press et al. 1986-1992), was used to generate random deviates with a normal 
(Gaussian) probability distribution. When each element is given a random density in the 
beginning of the analysis, one numerical simulation will be different from the next. Hence, one 
analysis can be an “extreme” case that is not likely to happen. Several analyses should therefore 
be carried out to make sure that the response is of a wanted probability. Figure 1 shows an 
example of how the density is distributed in a foam specimen. 

The material constants, C0, C1, and n should be calibrated to Eqn. (39) when using the option 
with statistical variation of the parameters, as the material constants all depend on the foam 
density. However, this requires that a larger experimental database is available. Hanssen et al. 
(2002) pointed out that the fit to Eqn. (39) is best for the plateau stress while there is some 
deviation for the other parameters. Nevertheless, as the main goal is to introduce a variation in 
the material parameters, the use of Eqn. (39) seems reasonable. 

Fracture 

Two simple fracture criteria were implemented in the model. As fracture is often modeled in 
FEM-analyses by removing (eroding) elements when they reach a critical value of strain, one 
possible fracture criterion was to use the volumetric strain mε  as a measure for when an element 
should be eroded: 

 crIf           erosion of elementmε ε≥ ⇒  (41) 

where crε  is the critical strain. Eqn. (41) was implemented in the subroutine, and the criterion 
will be referred to as “fr1” in the following. 

In addition, a second fracture criterion was implemented. As only hydrostatic deformation is 
included in the first criterion, and it is natural to assume that also deviatoric deformation can 
cause fracture, a criterion where the principal stress is used for evaluation of fracture was also 
 

    

Figure 1 Distribution of density for analysis with statistical variation, ρ = 0.314 ± 0.0225 
g/cm3 
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implemented. The criterion is based on erosion of elements when the maximum principal stress 
reaches a critical value: 

 1 crIf           erosion of elementσ σ≥ ⇒  (42) 

where crσ  is the critical stress. As the tensile failure stress was approximately equal to the initial 
plateau stress in compression (Hanssen et al. 2002), it can be used as a critical value of the 
principal stress, i.e. cr pσ σ= . However, because of spurious noise produced by contact forces and 
elastic stress waves which are initiated when an element is eroded, the stress levels in the 
elements can at times be higher than the critical stress, although these should not necessarily 
cause fracture. To avoid premature erosion of elements, an energy-based criterion was 
established from Eqn. (42), motivated by a fracture criterion for metals due to Cockcroft and 
Latham (1968). The fracture criterion reads: 

 ( )
ˆ

1 10
ˆIf              erosion of elementcrH d C

ε
σ σ σ ε− ≥ ⇒∫  (43) 

where, H(x) is defined as 

 ( ) 1 if   0
     

0 if   0

x
H x

x

≥
=  <

 (44) 

Eqn. (43) was implemented in the subroutine, and the criterion will be referred to as “fr2” in the 
following. Be aware that the critical value C can be problem dependent and has thus to be 
selected based on experience or validation studies using experimental data. 

Model Verification 

As mentioned in the introduction, the model verification is thoroughly reported by Reyes et al. 
(2003). However, some of the results will be presented briefly here to show the correlation 
between analyses and experiments.  

Several verification tests were carried out by Hanssen et al. (2002). This experimental program 
included indentation tests called “Mval 1” and diagonal loading called “Mval 2”, and some of the 
results of these two tests will be presented in the following. The verification study also included 
uniaxial and hydrostatic compression tests, but the results from these will not be discussed here. 
However, it is worth mentioning that the uniaxial compression tests were predicted by the 
analyses with very good accuracy, while the hydrostatic compression analyses deviated 
significantly from the experiments. Yet, the theoretical behavior resulting from Eqns. (7), (18) 
and (38) were predicted (Reyes et al. 2003). 

The test specimens of “Mval1” and “Mval2” were cubic with dimensions 70x70x70 mm3. 
Because the plastic coefficient of compression was assumed zero, plane strain conditions could 
be applied, and both 2D and 3D analyses were carried out. For the 3D analyses, it was necessary 
to use a fully integrated S/R solid element, while the default eight-node brick element of LS-
DYNA was applied with one point reduced integration scheme for the 2D analyses as much finer 
meshes could be used. The stiffness based hourglass control #5 in LS-DYNA was used in order 
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to avoid hourglassing. The tests were loaded quasi-statically, and the load was applied through a 
rigid body which was given the following prescribed velocity field to ensure quasi-static loading 

 max( ) 1 cos
2 2

d
v t t

T T

π π
π

  = ⋅ − ⋅  −   
 (45) 

Here, T is the total duration of the loading, dmax is the final displacement. When integrated from 
t = 0 to t = T, Eqn. (45) yields dmax, and when differentiated with respect to time, the initial 
acceleration equals zero. The applied velocity and pressure fields should ensure that the loading 
takes place gradually and that unnecessary dynamics in the numerical solution are avoided 
(Ilstad 1999). The termination time T was 0.1 s.  

Mesh sensitivity studies of the 2D analyses were carried out, and the solution converged for a 
model of 2574 (“Mval1”) and 1600 (“Mval2”) elements. 

“Mval 1” 
3D analyses of “Mval1” where fracture was neglected were carried out, in addition to analyses 
with the two fracture criteria and analyses with statistical variation of the foam density. Figure 2 
shows how the indentation tests behaved in the experiments, and how the analyses without 
fracture were not able to predict this behavior. The deformation behavior of the analyses 
including fracture (both “fr1” and “fr2”), and statistical variation of density are shown in 
Figure 3. As one can see, the analyses with “fr2” are very similar to the physical tests. Figure 4 
shows the force-displacement curves from the analyses and experiments, and the force-
displacement behavior is very well predicted by the analyses with “fr2”. The force levels are 
overestimated in the analyses where fracture is neglected, and in the analyses with “fr1”. It is 
also obvious that the statistical variation of density does not have a great influence on the force-
displacement curves.  

 “Mval 2” 
Both 2D and 3D analyses of “Mval 2” were carried out, and the deformation behavior and force-
displacement curves from both experiments and analyses are shown in Figure 5. As one can see, 
both 2D and 3D models predicted the behavior in the physical tests with good accuracy. 

Correlation between analyses and experiments 
Correlation plots between mean loads from analyses and experiments are shown in Figure 6 for 
both “Mval1” and “Mval2”. Included in the figure are also results from the uniaxial compression 
tests (called “Cal1”). As one can see, there is a very good correlation for “Cal1”, “Mval2” and 
“Mval1” with “fr2”. 
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analyses w/o fracture 

   

experiments 

 

Figure 2 Deformation behavior of “Mval 1” 

   

“fr1” “fr1” & statistical 
variation of density “fr2” 

Figure 3 Deformation behavior of “Mval 1”, plane strain model 
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Figure 4 Force-displacement plots for indentation test (“Mval 1”): experiments and different 
analyses 
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Figure 5 Deformation behavior and force-displacement curves of “Mval 2” 
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Figure 6 Correlation between mean loads from numerical analyses and experiments 

Concluding Remarks 

The foam model suggested by Deshpande and Fleck has successfully been implemented in LS-
DYNA, and two simple fracture criteria and the possibility to include statistical variation of 
density were incorporated in the model. For the indentation test, a stress-based fracture criterion 
gave the best results in comparison with the physical tests, and these numerical analyses together 
with the analyses of the other verification tests were able to predict the behavior in the 
experiments with good accuracy. Taking statistical variation of density into account did not have 
a great effect on the behavior. The results from the present project are promising, as the 
implemented model is efficient, robust, and able to predict the observed behavior in verification 
experiments. At present, a version of the model containing one of the fracture criteria (the strain-
based) and without the possibility of statistical variation of density is available in version 970 of 
LS-DYNA. 
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