x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Modeling of Fuel Sloshing Phenomena Considering Solid-Fluid Interaction

The sloshing phenomenon in partially filled fuel tanks is more pronounced when vehicles experience a sudden start or stop. Sloshing is un-desired because it produces noise, high impact force on the tank walls and the challenge of low fuel handling. Today, the solution for containing sloshing is to incorporate baffles inside the tank. The presence of baffle dissipates the energy that is induced by the fuel motions. Design of baffles is a necessary step during the design of a fuel tank to meet required performance specification in service. A methodology to simulate sloshing phenomenon that incorporates solid-fluid interaction is presented in this paper. The methodology makes use of both Eulerian and Lagrangian formulation. Eulerian domain includes both air and fuel inside the tank, and the space around the tank. Lagrangian domain includes the tank shell and baffle structure. A concept of coupling surfaces is introduced in Eulerian domain to build the boundary of the inner and the outer of tank structure. The coupling surfaces also act as interactive surfaces between both Eulerian and Lagrangian domains to prevent penetration. A computational method is employed to simulate the sloshing phenomenon in tank when the vehicle is in motion. The simulation results are compared with the sloshing test results.

application/pdf 04-2.pdf — 248.9 KB