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ABSTRACT 
 
Buckling and post-buckling of composite structures have been important research topics since composite materials 
became widely used in engineering. As a result, significant volume of research has been done on their static stability, 
while relatively less has been devoted on characterizing their dynamic buckling and post-buckling response. The 
literature became particularly scares when considering the dynamic pulsebuckling and post buckling of axial 
components subjected to axial impact.  This paper, therefore, presents the findings of our finite element analysis of 
dynamic pulsebuckling response of slender laminated fiber reinforced plastic (FRP) composite beams, with initial 
geometric imperfection, subject to axial impulse using LS-DYNA. 
 
Dynamic pulsebuckling, as an instability form, or in the form of excessive growth of lateral or out of plane 
displacements, is resulted from a transient loading function of a single pulse with a magnitude greater than the static 
Euler buckling load. The FRP laminated composite beam with initial geometric imperfection, subject to axial impact 
of a moving object, is modeled by the Belytschko-Tsay shell element. The moving object is defined as a rigid wall 
with a mass and initial velocity.  Dynamic pulsebuckling of an imperfect beam is characterized by the sudden and 
drastic increase in the lateral deflection while the axial load bearing capacity remains unchanged relatively when the 
impact momentum reaches a critical value. Numerical results show that momentum of the moving object may be 
considered as a viable parameter for predicting the dynamic pulsebuckling limit of the beam. 
 
In this investigation, the effect of initial geometric imperfection used to promote instability was investigated and was 
shown to be a significant factor in promoting pulsebuckling. The effect of boundary conditions was also investigated 
and the significances of the axial and rotational restraints were demonstrated with numerical examples. A predictive 
criterion for the onset of pulse buckling was also presented.  
 

INTRODUCTION 
 
The buckling and post-buckling analysis of composite structures has been an important research topic since due to 
their high strength-to-weight ratio, composite materials have became widely used in engineering structures. As a 
result, a significant amount of research has been done on their static buckling, while relatively less has been devoted 
on characterizing their dynamic buckling and post-buckling.  On the topic of dynamic buckling and post-buckling, 
many of the works concentrated on instability of plates/shells/beams under in-plane and transverse periodic loads 
(Lam and Ng, 1998, Liaw and Yang, 1990, and Zhou, 1991).  To the authors' knowledge, much less work has been 
done on dynamic buckling and post-buckling of slender laminated composite beams subject to an axial impulse, 
although axial impulse is a very common loading type for slender engineering structures.   
 
Dynamic pulsebuckling, as an instability form, or in the form of excessive growth of lateral or out of plane 
displacements, is resulted from a transient loading function of a single pulse with a magnitude greater than the static 
Euler buckling load. Considerable work ( Housner and Tso, 1962, Abrahamson and Goodier, 1966, Ari-Gur, et. al., 
1982, et. al.) has been done regarding the dynamic pulsebuckling analysis of metallic components (isotropic) since 
the earlier work of Koning and Taub(1934).   
 
As stated, relatively much less volume of research has been performed on the dynamic pulsebuckling and post 
buckling response of FRP beams and columns in comparison to the works on their metallic counterpart.  Ekstrom 
(1973) investigated the elastic buckling of a simply supported rectangular orthotropic plate, with initial imperfection, 
under a compressive pulse load.  Ari-Gur and Simonetta (1997) constructed an analytical model of dynamic 
pulsebuckling of rectangular composite plates based on the Kirchhoff thin plate deformation theory with the 
assumption of small rotation of the cross-section. Wang et al. (1998) focused their investigation on the dynamic 
buckling of laminated composite bars based on the Timoshenko beam theory. Recently, Zhang and Taheri (2002a, 
2002b, 2002c) also reported their investigations on dynamic pulsebuckling of laminated beams with initial geometric 
imperfections. The finite difference method was the main scheme to solve the dynamic differential equations. 
 
The purpose of this paper is to present the details of our finite element investigation on the dynamic pulsebuckling 
and post-buckling response of laminated composite beams with initial geometric imperfection subjected to axial 
impulse which was conducted by LS-DYNA(1999). Moreover, it was also to verify the results generated by the 
finite difference solutions presented elsewhere by the authors (2002a, 2002b, 2002c). The validity of a proposed 
dynamic pulsebuckling criterion, as well as the influence of geometric imperfection, slenderness ratio and boundary 
conditions of beams on their dynamic pulsebuckling response were all investigated and discussed.  
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FE MODEL OF LAMINATED COMPOSITE BEAM 
 
We consider an n-layer FRP laminated beam with one end impacted by a moving mass ( 0M ) with velocity ( 0V ). 

The length of the beam is L. The cross section of the beam is retangular (as shown in Figure 1), with width b and  
thickness h. The initial geometric imperfection is )(0 xw . The laminated beam is modeled as orthotropic elastic 

laminated plate with the Belytschko-Tsay shell elements, as shown in Figure 1(c). The moving mass is defined as a 
rigid wall with a mass and initial velocity. The damping property is ignored during this analysis due to the short time 
duration of the impact. 
 

 
Figure 1: The Laminated FRP Beam impacted by a moving mass – (a) Fixed-end support  (FS); (b) Pinned-end 

support (PS); (c) Finite element mesh. 
 

DYNAMIC PULSEBUCKLING 
 
 Problem descriptions 
The beam made of 8 layers of E-glass/epoxy ])0[( 8 , with the boundary condition shown in Figure 1(a) is considered.  

The initial geometric imperfection of the beam is assumed to have a half sine wave form )sin()( 00 L

x
Wxw

π= .  The 

right end of the beam is impacted by a moving mass. The geometrical and material properties are tabulated in Table 
1.  
 

Table 1: Geometric and material properties of the beam 

Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Imperfection W0(mm) 
)/sin(( 0 LxW π  

E11 
(N/m2) 

E22 
(N/m2) 

G12 
(N/m2) 12γ  

Density 
(Kg/m3) 

300 20 1.6 Factor * thickness 39E9 86E8 38E8 0.28 2100 
 
 
Dynamic pulsebuckling of the beam 
As mentioned, dynamic pulsebuckling, as an instability phenomenon, is characterized with excessive growth of the 
lateral, or out of plane displacements while the load bearing capacity of the component remains relatively unchanged. 
In our studies, the beam is impacted by a moving mass, in which the dynamic response of the beam varies with the 
different impact velocity of the moving mass. When the velocity of the moving mass is increased to the vicinity of 
some 'critical value', with a small increase of impact velocity, the deflection of the beam would increase 
dramatically, while the axial load capacity of the beam remains relatively constant, as shown in Figure 2, which 
shows the results of the beam with initial geometric imperfection amplitude hW 01.00 = , impacted by a moving 

object with mass KgM 1.00 = .  
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Figure 2: FE results of dynamic pulse buckling response of the beams - Deflection at mid-span of beam versus (a) 
axial displacement at the impacted end; (b) axial compressive strain at the neutral surface at mid-span of 
the beam; (c) initial velocity of moving mass. 

 
 
 
 
 

INFLUENCE OF INITIAL GEOMETRIC IMPERFECTIONS 
 
To investigate the influence of initial geometric imperfection of the beam on the critical velocity or momentum (in 
the next section we will demonstrate that the momentum can be viewed as a criterion of pulsebuckling for the 
beams), three beams with length of 450, 300 mm and 150 mm, each with width of 20 mm and different initial 
geometric imperfection of ,001.00 hW = ,01.00 hW =  and ,10.00 hW =  respectively, were analyzed subject to varying 

impact velocities. The resulting lateral deflection at the mid-span of the beam versus the impact momentum is 
shown in Figure 3. Figure 3 shows the resulting mid-span deflection versus impact momentum, for the varying 
length beams. From the figure it is obvious that the larger the initial geometric imperfection, the smaller the critical 
momentum.  Figure 3 also indicates that regardless of the initial imperfection amplitude, once the momentum 
reaches a critical value, with a minor increase in the momentum, the beams undergo dynamic buckling (i.e., the 
lateral deflection increases rapidly and excessively).  However, the axial load bearing capacity (i.e., the axial 
displacement and axial compressive strain), does not increase in the same rate as the lateral deflection (see details in 
Zhang  Taheri, 2002b). 
 
 
 
 

 
                      (a)                                              (b)                                               (c)  

Figure 3: Deflection at mid-span of beam vs impact momentum for different beam lengths with initial geometric 
imperfection – (a) 450 mm; (b) 300 mm; (c) 150 mm. 
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PULSEBUCKLING CRITERION 

 
Momentum as a dynamic pulsebuckling criterion 
Momentum ( tM ), defined as the product of mass (M) and impact velocity ( 0V ) of the moving mass, can be 

considered as a parameter that initiates dynamic instability. It is assumed that the beams undergo dynamic instability 
when their momentum approaches a critical value. This phenomenon can be seen from Figure 4. The figure shows 
the variation of mid-span deflection as a function of momentum for various imperfections and impact masses and 
velocities, for the 300mm long beam.  This plot illustrates that the critical buckling momentum for a beam with a 
given initial imperfection is relatively fixed, irrespective of variation of the impact mass and velocity. Therefore, 
momentum may be used as a reasonable criterion for predicting the onset of dynamic pulsebuckling of FRP 
laminated beams subjected to axial impact of a moving mass.  
 

 
 

Figure 4: Variation of mid-span deflection as a function of momentum for various imperfections and impact masses 
and velocities. 

 
Critical momentum versus slenderness and Curvature of beam 
Under static and quasi-static loading conditions, the critical Euler buckling load increases with the decrease of 
slenderness ratio. This, however, does not hold necessarily in dynamic pulsebuckling.  Comparing the graphs in 
Figure 3, one would observe that the beams’ critical buckling momentum decreases as the length get shorter (i.e., the 
slenderness ratio decreases), for all initial imperfection values tested.  This is opposite to what common sense would 
lead one to expect, as one would expect that the critical buckling capacity should increase as the slenderness ratio 
decreases. Such a response is due to the fact that for a specific imperfection amplitude, the shorter the beam, the 
larger the curvature of the beam. With the realization that the bending moment is proportional to the curvature, 
therefore, the larger the curvature, the higher the bending moment. This can be further seen in Figure 5, which 
shows the variation of critical buckling momentum as a function of slenderness ratio and maximum curvature of 
beam for different initial geometric imperfections. One can therefore predict the critical momentum (the momentum 
value causing pulsebuckling), of a beam with a specific imperfection from such a diagram.  This phenomenon also 
conforms to the conclusion of the finite difference solution of Zhang and Taheri (2002b). 
 

 
 

Figure 5: Variation of buckling momentum as a function of slenderness 
ratio and curvature of beam. 
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EFFECT OF BOUNDARY CONDITIONS 

 
To investigate the effects of boundary conditions on the pulsebuckling and post buckling response, as shown in 
Figure 1, two types of boundary conditions were considered, fixed-end support (FS) and pinned-end support (PS),. 
 
Effect of boundary conditions on axial displacement, axial compressive strain and deflection 
Figure 6 shows the results of axial displacement, axial compressive strain and deflection for different boundary 

conditions when the beam is impacted by a moving rigid body with mass M=0.10 kg, initial velocity 0V =10.0 m/s 

and the amplitude hW 1.00 = .  From the figure, we can see that during the impact period (approximately 0.0~0.5ms), 

the two types of boundary conditions do not influence the response. In general, the axial displacement was much 
larger than the lateral deformation of the beam. From the one dimensional wave propagation equation of a perfect 
straight component, 
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one can forecast that the axial restraint affects the axial wave propagation. For the imperfect beam, the axial 
boundary condition is still a governing factor that affects the axial behavior of the beam. During the post-impact 
period, the deflection for the pinned-end support (PS) is larger than that of the fixed-end support (FS), as shown in 
Figure 6.  This is mainly due to the fact that the PS provides no rotational constraint to the beam’s ends. This 
phenomenon was also presented by the authors elsewhere (Zhang and Taheri, 2002c), in which the response was 
characterized by a finite difference based strategy. 
 
Buckling criteria 
Figure 7 shows the plots of deflection of the mid-span of beam as a function of momentum for different initial 
geometric imperfections under different types of boundary conditions. One can see from the figure that for both 
types of boundary conditions, the larger the magnitude of initial geometric imperfection, the smaller the critical 
buckling momentum. This also conforms to the conclusions drawn by Zhang and Taheri (2002b), based on their 
sensitivity analysis.   For the effects of boundary conditions on the critical buckling momentum of pulsebuckling, 
one can see that the boundary conditions (fixed-end support and pinned-end support) do not significantly affect the 
buckling response. This phenomenon can also be seen from the beam profiles, as shown in Figure 8.  Although the 
lateral response of beam is different for different boundary conditions, the critical impact momentum is very close.  
 

 



7th International LS-DYNA Users Conference Material Technology (1) 

 8-47 

Figure 6: Comparison of the effect of fixed-end (FS) and pinned-end (PS) supports on the pulsebuckling response 
(time history results) - (a) Axial displacement at the impacted end; (b) Axial compressive stress at the 
neutral surface of mid-span of beam; (c) Mid-span deflection.  

 

 
 

Figure 7: Comparison of the mid deflection of the beams as a function of momentum for different initial geometric 
imperfections under different types of boundary conditions. 

 

                     
(a)   (b) 
 

Figure 8: Dynamic profiles of the beams and distribution of deflection along the  
beam length for different boundary conditions – (a) PS; (b) FS. 

 

CONCLUSION 
 
Dynamic pulsebuckling of FRP laminated slender beams, having initial geometric imperfections, subject to axial 
impulse of a moving object load was investigated by the finite element method using LS-DYNA code.  It was shown 
that momentum might be considered as a viable parameter for predicting the dynamic pulsebuckling limit of the 
beams. Initial geometric imperfection was shown to be an important factor that affected the dynamic pulsebuckling 
response. It is apparent that critical buckling momentum decreases with the increase in initial geometric 
imperfection amplitude. It was also observed that for a beam with a specific imperfection magnitude, the smaller its 
slenderness ratio (i.e., the shorter the beam), the smaller the critical buckling momentum. Our investigation also 
indicated that the amplitude of initial geometric imperfection played a more significant role in promoting dynamic 
pulsebuckling than the slenderness ratio of beam. It was shown that the onset of dynamic pulsebuckling could be 
predicted from the diagram of momentum versus curvature and slenderness ratio. 
 
The effects of boundary conditions on the buckling and post-buckling responses were also examined. From the 
results of analysis, one may conclude that the axial restraint mainly controls the axial behavior of the beam, while 
the rotary restraint of the beam end do not affect the buckling criterion much.   
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