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ABSTRACT 
This work presents a computational material model of flexible woven fabric for 
finite element impact analysis and simulation. The model is implemented in the 
nonlinear dynamic explicit finite element code LSDYNA. The material model 
derivation utilizes the micro-mechanical approach and the homogenization 
technique usually used in composite material models. The model accounts for 
reorientation of the yarns and the fabric architecture. The behavior of the flexible 
fabric material is achieved by discounting the shear moduli of the material in free 
state, which allows the simulation of the trellis mechanism before packing the 
yarns. The material model is implemented into the LSDYNA code as a user 
defined material subroutine. The developed model and its implementation is 
validated using an experimental ballistic test on Kevlar woven fabric. The 
presented validation shows good agreement between the simulation utilizing the 
present material model and the experiment. 

Keywords: computational material model, flexible woven fabric, textile 
composites, and explicit finite element ballistic impact simulation. 

INTRODUCTION 

The high modulus fibers such as Kevlar, Spectra, Aramid, Nylon, etc. are vastly used not 
only in composite materials, but also in netted fabric as structural element which has high 
strength and flexibility. These two properties are very important for impacted structures, since 
they allow the structure to withstand large transverse deflection and to absorb the high impact 
energy. Woven fabrics can be used in structures subjected to transverse loading like human body 
armors subjected to projectile impact. Another application of the high modulus flexible fabrics is 
the protective jackets in airplane jet engines. These jackets are placed around the jet engines in 
order to contain any broken blades from penetrating the engine casing and consequently the 
fuselage.  

Modeling of the flexible fabric behavior under membrane and transverse loading is a 
challenging task. The difficulty comes from the dual behavior of the fabric. In the free state, the 
fabric material behavior resembles trellis mechanism [1] with big reorientation of the yarns. 
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Initially, fill and warp yarns are mutually perpendicular (Fig 1,a). The load is carried by the 
yarns in their axial direction only. In any other in-plane direction they are free to rotate up to 
some locking angle (Fig. 1,b). The fabric slightly resists shear strain (and yarn  rotation) due to 
the friction between yarns. When the rotated yarns have reached the locking angle between yarns 
(Fig. 1,c), the area density of the fabric is the highest and the yarns are packed in a block that has 
anisotropic properties. Moreover, the properties of the packed fabrics are of a general anisotropic 
material with many inclined principle axes.  

Some models of the flexible fabric material available in the literature use the pin-joined 
mechanism of bars. Ting et al. [2] and Shim et al. [3] modeled the fabric material as an 
orthogonal grid of pin-joined member elements. Contact algorithm and transverse pressure 
loading are the difficult problems in such models. The finite element mesh has to be in scale of 
the fabric structure, which presents some difficulties in the general use of such models. The 
friction and the locking angle constraints are absent in most of these models. Even if they have 
been introduced in such models, the behavior of the model after locking will not be adequate 
because of the lack of transverse interaction of the members.  

Vinson and Zukas [4] and Taylor and Vinson [5] modeled the fabric as conical isotropic 
shells for ballistic impact analysis. As a result of isotropic material assumption the models are 
not able to distinguish the membrane directions, and as a result the behavior of the material is the 
same in all directions, which is not confirmed by experimental results. Johnson et al. [6] tried to 
amend that by modeling the fabric by both pin-joined members and thin membrane shells. Bi-
linear stress-strain relationship is assumed for bar elements in order to simulate the dual behavior 
of the fabric before and after the locking of the trellis mechanism. The shell elements provide the 
contact surface in this model.  

The impact and ballistic problems can be simulated successfully by means of non-linear 
dynamic finite element codes. Such codes are heavily used in many industries as they provide a 
powerful tool and cost effective process for simulation-based designs. Based on previous 
developments of woven fabric composite computational models [7,8,9], it was anticipated that 
the homogenization technique used in micro-mechanical models gives good results with respect 
to the complex anisotropy modeling of the flexible fabric structures. A micro-mechanical model 
of the woven fabric can account for the crimping of the fibers. Shell elements are better 
structural elements for contact problems and transverse pressure loading in the finite element 
method. Therefore it was decided to develop a model of the flexible woven fabric material, that 
can simulate a trellis mechanism with reorientation of the yarns and their locking, based on 
micro-mechanics. The developed computational material model is implemented in the dynamic 
explicit nonlinear finite element code LSDYNA as a user defined material model that is 
compatible with membrane shell elements. The model was utilized to solve a ballistic impact 
problem of woven fabric material. In what follows, a description of the model and its 
implementation is presented. 

 

THE COMPUTATIONAL MICRO-MECHANICAL MODEL 

The Representative Volume Cell (RVC) approach is utilized in the micro-mechanical 
model development. The interlacing yarn pattern of the flexible weave fabric is depicted in 
Figure 1. As a result of the deformations, the fill and the warp yarns are no longer orthogonal 
although at the unloaded state, they could be orthogonal (the angle between fill and warp 
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direction is a user input parameter in the formulation). The RVC in this case is a rectangle in the 
plane of the fabric with diagonals in the fiber directions (Fig. 1,b) rather than a square with mid-
sides in the fiber directions, which is usually used in other models [7,8,9]. 

The RVC structure is shown in Figure 2. The RVC is divided into four sub-cells, two 
anti-symmetric sub-cells containing the undulated fill-yarn and two other anti-symmetric sub-
cells containing the warp yarn. The direction of the yarn in each sub-cell is determined by two 
angles – the braid angle, θ, and the undulation angle of the yarn, which is different for the fill 
and warp-yarns, βf and βw, respectively. 

The starting point for the homogenization of the material properties is the determination 
of the yarn stiffness matrices. The material of the yarn is assumed to be transversely isotropic: 
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where 2312231221 and,,,, GGEE νν  are Young’s moduli, Poisson’s ratios, and the shear moduli 

of the yarn material, respectively. µ is a discount factor, which is function of the braid angle, θ, 
and has value between µ0 and 1. Initially, in free stress state, the discount factor is a small value 
(µ0 << 1) and the material has very small resistance to shear deformation if any. In this way, the 
material behaves like a trellis mechanism with small resistance against the rotation of the yarns, 
corresponding to the friction between yarns. When the locking occurs, the fabric yarns are 
packed and they behave like elastic media. The discount factor is unity in this case and the fabric 
material resists to the shear with its real shear moduli. The contracted notation for strain and 
stress components adopted here is: 1≅11, 2≅22, 3≅33, 4≅12, 5≅23, 6≅31. The material directions 
of the yarn are depicted in Figure 3. We assume different stiffness matrices for fill and warp 
yarns in order to model unbalanced woven fabric. When the yarn stiffness matrix of each sub-
cell is determined in the material coordinate system, it is transformed to RVC coordinate system. 

The transformation of the sub-cell stiffness matrices from the material coordinate system 
to the RVC coordinate system is performed by the formula: 

 [ ] [ ] [ ][ ]TCTC ′= T  , (2) 

where [C] is the stiffness matrix in RVC coordinate system, [ ]C′  is the stiffness matrix in 
material coordinate system and [T] is the transformation matrix. The transformation matrix [T] 
contains components depending on directional cosines of the material axes with respect to RVC 
coordinate system [10]: 
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are the directional cosines of the material axes in RVC coordinate system. 

After the transformation, the sub-cell stiffness matrices are in the form of the stiffness 
matrices for generally anisotropic materials. The anti-symmetry between both fill yarn sub-cells, 
as well as, between both warp yarn sub-cells makes the transformation easier, because only two 
transformation matrices are necessary to be calculated and only two transformations are 
necessary to be performed. One can easily prove that the stiffness matrix of “F”-sub-cell in RVC 

coordinate system, ][ FC , is related to “f”-sub-cell stiffness matrix components in RVC 

coordinate system, f
ijC  , by the following relation: 
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The “W”-sub-cell stiffness matrix can be obtained from the “w”-sub-cell stiffness matrix 
components by using a similar relation. The transformed sub-cell stiffness matrices are 
homogenized in order to obtain the effective stiffness matrix of the RVC. 

 

Homogenization Procedure 

Mixed boundary conditions, iso-strain and iso-stress assumptions are adopted here for the 
homogenization of the sub-cell materials in the RVC [11]. The strain and stress components of 
constituents are divided into two groups – three iso-strain components and three iso-stress 
components: 
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 { } { } { }{ }TTT
kksknk εεε = , (6) 

 { } { } { }{ }TTT
kksknk σσσ =  , (7) 

where n-subscript denotes iso-strain components, s-subscript denotes iso-stress components and 
k = f, w, F, W  denotes the sub-cell, according to the adopted notation for them. The stiffness 
matrix of each constituent is split into four 3×3 matrices: 
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where [ ]knnC  and [ ]kssC  are symmetrical and [ ] [ ]Tknsksn CC = . The constitutive equations for 

each sub-cell now can be written as follows: 

 { } [ ] { } [ ] { }ksknsknknnkn CC εεσ +=  , (9) 

 { } [ ] { } [ ] { }kskssknksnks CC εεσ +=  , (10) 

The effective properties of the homogenized volume are assumed to be volumetric 
averages of the constituent properties. Because the strain and stress are the same at all points of 
each constituent volume, the effective strain, { }ε , and the effective stress, { }σ , vectors can be 
expressed by the rule of mixture: 

 { } { }∑ ε=ε
k

kkf  , (11) 

 { } { }∑ σ=σ
k

kkf  , (12) 

where fk is the volume fraction of the k-th constituent in the homogenized volume. The effective 
strain and stress vectors are related by the effective stiffness matrix, [ ]C , which is the ultimate 
aim of this procedure: 

 { } [ ]{ }εσ C=  . (13) 

Partitioning the effective stiffness matrix into four matrices, the constitutive equations for the 
homogenized material can be written as follows: 

 { } [ ]{ } [ ]{ }snsnnnn CC εεσ +=  , (14) 

 { } [ ]{ } [ ]{ }sssnsns CC εεσ +=  , (15) 

where 

 [ ] [ ] [ ]
[ ] [ ]
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Applying the mixed boundary conditions on the constituents, we have the following: 

 { } { }knn εε =  , (17) 
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 { } { }kss σσ =  , (18) 

The rule of the mixture ((11) and (12)), applied to the remaining parts of the strain and stress 
components, leads to the following: 

 { } { }∑ ε=ε
k

ksks f  , (19) 

 { } { }∑ σ=σ
k

knkn f  . (20) 

Substituting (17) and (18) in (10) and solving it, one obtains the following: 

 { } [ ] { } [ ] [ ] { }nksnkssskssks CCC εσε 11 −− −=  . (21) 

Then substituting iso-strain components of strain in (9) and again using (17) and (18), we have: 

 { } [ ] [ ] [ ] [ ]( ){ } [ ] [ ] { }skssknsnksnkssknsknnkn CCCCCC σεσ 11 −− +−=  . (22) 

Next, by substituting (22) in (20) and (21) in (19), we obtain: 

 [ ] [ ]{ } [ ]{ }snn CC σεσ ∗∗ += 21  , (23) 

 [ ] [ ]{ } [ ]{ }nss CC εσε ∗∗ −= 43  , (24) 

where 

 [ ] [ ] [ ] [ ] [ ]( )∑ −∗ −=
k

ksnkssknsknnk CCCCfC 1
1  , (25.1) 

 [ ] [ ] [ ]∑ −∗ =
k

kssknsk CCfC 1
2  , (25.2) 

 [ ] [ ]∑ −∗ =
k

kssk CfC 1
3  , (25.3) 

 [ ] [ ] [ ]∑ −∗ =
k

ksnkssk CCfC 1
4  , (25.4) 

Finally, the constitutive equations for homogenized volume are obtained by solving (24) for 
{ }sσ   and substituting it in (23): 

 { } [ ] [ ]{ } [ ] { }sns CCC εεσ
1

34
1

3
−∗∗−∗ +=  , (26) 

 { } [ ] [ ][ ] [ ] { } [ ][ ] { }snn CCCCCC εεσ
1

324
1

321
−∗∗∗−∗∗∗ +






 +=  , (27) 

The effective stiffness matrix of the homogenized volume can be expressed as follows: 

 [ ] [ ] [ ][ ] [ ]∗−∗∗∗ += 4
1

321 CCCCCnn  , (28.1) 

 [ ] [ ][ ] 1
32

−∗∗= CCCns  , (28.2) 
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 [ ] [ ] [ ] [ ]T4
1

3 nssn CCCC == ∗−∗  , (28.3) 

 [ ] [ ] 1
3

−∗= CCss  , (28.4) 

The RVC is discretized by the sub-cells. In order to provide continuity of the RVC in the 
membrane shell element plane, which is the proper FE for fabric modeling, in-plane iso-strain 
boundary conditions are applied for xy-plane of the RVC. The out-of-plane stress components of 
the sub-cells are equal to the RVC out-of-plane stress components. The imposed in-plane iso-
strain and out-of-plane iso-stress boundary conditions can be written by means of the adopted 
contracted notation of components, as follows: 
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 (29) 

where 1≅xx, 2≅yy, 3≅zz, 4≅xy, 5≅yz, 6≅zx, according to the notation of the RVC coordinate 
system. 

The volume fractions of the constituents are equal for balanced fabric material, 
4/1==== WFwf ffff . In case of unbalanced fabric, proper volume fraction has to be 

calculated. 

The calculated effective stiffness matrix represents the elastic properties of the fabric 
material. Because of the anti-symmetry of the sub-cells and the form of their stiffness matrices 
(5) in RVC coordinate system, the form of the effective stiffness matrix is as follows: 
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Implementing the micro-mechanical model into a membrane shell element formulation, we can 
abandon the calculation of components 55C , 56C  and 66C , because the corresponding stress and 

strain components are always zero. This makes the code more computationally efficient. 

The instantaneous stiffness matrix is used to obtain the stress response of the fabric due 
to an increment of strain at each time step in the explicit finite element code. Note that the 
proposed material model is purposed for membrane shell elements and this is very important 
requirement for proper modeling of the fabric behavior. In tension, the FE model behavior is 
governed by the material model, while in compression, the FE model behavior is governed by 
the buckling phenomenon because of the lack of flexural stiffness in membrane elements. In this 
way, the micro-mechanical model and the membrane shell formulation are mutually 
complemented in order to represent truly the fabric behavior. 
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Fiber Reorientation 

The proposed micro-mechanical model is developed to account for the reorientation of 
the yarns. At any time the micro-model corresponds to some current state of the deformed RVC, 
when the directions of the yarns are different from the initial ones. The reorientation of the yarns 
involves geometrical non-linearity.  Therefore, a proper nonlinear method has to be used to solve 
for such a non-linearity. The utilized nonlinear method is the strain controlled incremental 
approach of the semi-discretization spatial approach employed in the explicit nonlinear finite 
element code. 

The directions of the fill and the warp yarns in xyz-coordinate system are determined by 
the unit vectors {qf} and {qw}, respectively. {qf} is the directional vector of fill yarn material axis 
1 in “f”-sub-cell, while  {qw} is the directional vector of warp yarn material axis 1 in “w”-sub-
cell. In Figure 4., only the projection of the RVC in the xy-plane is given. Initially, the yarn 
directional unit vectors are calculated from the initial values of the angles θ, βf, βw: 

 { } { }Tsinsincoscoscos ffffq βθβθβ=  , (31) 

 { } { }Tsinsincoscoscos wwwwq βθβθβ=  . (32) 

The deformation gradient tensor, [F] can be constructed from the engineering strain 
increment vector components: 

 ][][][][][2][][][ TT QDQUEIFF ==+=  , (33) 

where [I] is identity matrix, [E] - the strain increment matrix, [Q] – an orthogonal matrix, and 
[D] is a diagonal matrix with eigenvalues of [U] matrix. The singular value decomposition can 
be easily calculated, because the [U] matrix for membrane shell elements has the form: 
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In this way, the deformation gradient could be found from singular value decomposition of [U]: 

 ][][][][ T QDQF =  . (35) 

In the case of infinitesimal strains, we can determine the deformation gradient, in simpler way: 
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Now, the yarn directional unit vectors are rotated to their new positions and normalized: 

 { } [ ]{ } { } [ ]{ }wwff qFqqFq =′=′ ,  , (37) 

 { } { } { } { } { } { }wwwfff qqqqqq ′′=′′= /,/  , (38) 
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The new values of the angles determining the fiber directions are calculated from yarn 
directional unit vector components as follows: 

 3
1

3
1 sin,sin wwff qq −− == ββ  , (39) 

 
( ) ( )

2

/tan/tan 12
1

12
1

wwff qqqq −− −
=θ  , (40) 

The above-calculated angles can be used at each incremental step to calculate the 
instantaneous effective stiffness matrix of the RVC. These stiffness matrices consider the actual 
oriented yarns. When we use incremental approach for the non-linear finite element analysis, the 
strain increment is usually very small and satisfies the condition of infinitesimal strain, i.e. the 
strain increment to be very small compared to unity, therefore the expression (36) can be used. 
This is true for the explicit FE method, because of the inherent small time step used in the 
method.  

The initial values of the yarn orientation angles can be given by the user. Usually, we 
assume that initially the fabric model is in a free state with braid angle equal to 45°. The 
undulation angle, in fact, is changing along the yarn and it varies from zero to some maximal 
value less than 90°. The maximal value of the undulation angle is usually used as characteristic 
of the crimping. For the proposed model, the undulation angle is an average value characterizing 
the material principle directions of the sub-cell. The angle which tangent is the half of the fabric 
thickness divided by the distance between the yarns can be considered as a good approximation 
of the undulation angle needed for the micro-mechanical model.  

The discount factor, µ, is a function of the braid angle and it has to switch the model from 
trellis mechanism to elastic media and vise versa. In order to avoid high frequency oscillations 
due to the sudden stiffness change, a piece-wise function with a linear part in the transition range 
is chosen for the discount factor as follows: 
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where lockdn θθ −°= 45  is the lowest locking angle, lockup θθ +°= 45  is the highest locking 

angle,  θlock is the range to the locking angles (Figure 4.), and ∆θ is the transition range of the 
braid angle. The graph of the above function is given in Figure 5.  

The range to the locking angle, θlock , can be obtained from the yarn width and the 
spacing parameter of the fabric using simple geometrical relationship [1]. The transition range, 
∆θ, can be chosen to be as small as possible, but big enough to prevent high frequency 
oscillations in transition to compacted state and depends on the range to the locking angle and 
the dynamics of the simulated problem. The minimal discount factor, µ0, should provide very 
small shear resistance and negligible tension in the yarns when the tension in bias direction is 
applied and the yarns are still opened. The best way, of course, these parameters to be chosen is 
if we have force-displacement curve recorded during the trellis frame tension test of the fabric in 
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bias direction of loading [1]. Then we can choose the parameters to simulate and fit the force-
displacement curve to the recorded one in the experiment.  

 

NUMERICAL RESULTS 

The developed woven flexible fabric material model is programmed as a user defined 
material subroutine in the LSDYNA finite element software. The implementation in LSDYNA is 
for balanced woven fabrics. The user defined material model works with reduced and fully 
integrated membrane shell elements. The capability of the model to simulate the behavior of 
fabric structures in dynamic problems was examined with simulating a ballistic impact problem. 
The results of the simulation are compared to the experimental result described in [12]. 

Ballistic impact of a blunt projectile onto Kevlar® 129 piece of fabric was simulated.  
The projectile has mass 2.8 g and initial velocity 341 m/s. The projectile is a cylinder with 
diameter and height of 5.38 mm. The elastic properties of the fabric material are: 
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The fabric architecture is °== 1wf ββ , °= 5lockθ , °=∆ 5.0θ  and the discount factor is 
5

0 101 −×=µ . The fabric model has dimensions of 200×200×4.75 mm and was meshed by quad 

membrane elements.  

The results of the ballistic impact simulation can be seen in Fig. 6 as sequential images of 
deflected fabric surface and its profile. The shape of the deflected area is similar to quadratic 
pyramid, which is confirmed by the experiments [12]. The time history of the projectile 
displacement (Fig. 7) and the projectile velocity (Fig. 8) almost coincide with those in [12]. The 
history of the contact force between the projectile and the fabric is given in Fig. 9 and the fully 
absorbed kinetic energy history is given in Fig. 10. The different reorientation of the yarns in the 
finite elements depending on their position on the deflected surface is observed in the FE 
simulation. The difference is in the direction of the braid angle change. As it can be seen in Fig. 
11. the yarns in some elements are being opened, while in the others, they are being closed. This 
demonstrates how the trellis mechanism simulation of the material model works in the ballistic 
impact FE simulation.  

In order to demonstrate the behavior of the fabric model further, we simulated airbag 
inflation of a closed cylinder. The example is a cylinder with conical bottoms suspended on two 
springs. The orientation of the yarns is in ±45° with respect to the axial direction. The mass flow 
of the air in the airbag is ramp and the graph of this loading is shown in Fig. 1. The properties of 
the transversely isotropic yarn material are as follows: 

E1 = 200 MPa , E2 = 10 MPa , G12 = G23 = 38 MPa , ν12 = ν23 = 0.2 . 

The angle range to the locking is 20° from the initial position of the yarns and it allows the fabric 
model to stay open during the simulation. The discount factor of the shear modulus is 1×10-4. 
The closed thin cylinders under uniform internal pressure have 2D-stress with a ratio of the hoop 
stress to the axial stress equals 2:1. This difference drives the yarns of the loosely woven fabric 
material to get closer in the hoop direction and opener in the axial direction. As a result of the 
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deformation, the airbag shrinks in axial direction and swells in transverse direction. A 
demonstration of this behavior is depicted by successive states of the simulation in Fig. 2. 

The axial length change of the airbag is shown in Fig. 3. We can read 34 mm shrinking, 
which can be considered as significant. The diameter change of the cylinder is shown in Fig. 4. 
The swelling of the airbag in the transverse direction is approximately 15 mm. The airbag 
volume change as a result of the dimension change is shown in Fig. 5. The volume change is 
proportional to the squared diameter change and to the axial length change. The volume change 
of the airbag influences the pressure in the airbag. The development of the pressure is shown in 
Fig. 6. This kind of behavior is mainly due to the change of the angle between yarns. The graph 
of the angle change is shown in Fig. 7. A mutual rotation of 18 degree can be read for the yarns. 

Suppressing the shear modulus discount and the yarn reorientation tracking in the fabric 
model, we get a solid material model, which is suitable for tightened woven fabrics. The 
tightened woven fabrics have very different behavior. The behavior of the tightened woven 
fabric model is shown in Fig. 8 by the first and the last state of the simulation of inflated airbag. 
No visual change of the shape can be found. The axial length change is given in Fig. 9 and the 
diameter change is in Fig. 10. Both show insignificant swelling in all directions. The volume 
change is shown in Fig. 11 and the pressure change is in Fig. 12. 

 

CONCLUSION 

The developed micro-mechanical material model of flexible woven fabric can model the 
dual behavior corresponding to the real behavior of the fabric material. It can represent the trellis 
mechanism behavior before the locking of the yarns and the generally anisotropic elastic 
properties of the fabric material after packing of the yarns. The model can be successfully 
utilized to represent the behavior of flexible woven fabrics under transverse loading in FE 
simulation codes. The model shows very good capability for simulating ballistic impact 
problems and is validated through an experimental test. 
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Fig. 1. Plain-woven fabric interlacing pattern. 
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Fig. 2. Micro-mechanical model. 
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Fig. 3. Yarn orientation. 
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Fig. 4. Locking angles. 
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Fig. 5. Discount factor, µ, as a function of braid angle, θ. 
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Fig. 6. Deflection of the fabric surface impacted by a projectile 
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Fig. 7. Projectile displacement 
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Fig. 8. Projectile velocity 
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Fig. 9. Contact force between the projectile and the fabric 
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Fig. 10. Energy absorbed by the fabric. 
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Fig. 11. Braid angle change of two different elements and their position on the surface of 
impacted fabric model. 

 

Fig. 1. Air mass flow as ramp loading. 
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Fig. 2. Successive states of short airbag with loosely woven fabric model inflation simulation. 

 



7th International LS-DYNA Users Conference Material Technology (1) 

 8-35 

 

Fig. 3. Axial length change of short airbag with loosely woven fabric model. 

 

 

Fig. 4. Diameter change of short airbag with loosely woven fabric model. 
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Fig. 5. Volume change of short airbag with loosely woven fabric model. 

 

 

Fig. 6. Pressure change in short airbag with loosely woven fabric model. 
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Fig. 7. Change of the angle between the yarns for short airbag with loosely woven fabric model. 

 

 

Fig. 8. Successive states of short airbag with tightened woven fabric model inflation simulation. 
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Fig. 9. Axial length change of short airbag with tightened woven fabric model. 

 

 

Fig. 10. Diameter change of short airbag with tightened woven fabric model. 
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Fig. 11. Volume change of short airbag with tightened woven fabric model. 

 

 

Fig. 12. Pressure change in short airbag with tightened woven fabric model. 
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