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ABSTRACT 
 
Crashworthiness problems, which are highly dynamic and nonlinear, do not lend themselves well to classical 
gradient optimization techniques. Evolutionary-based design approaches that employ a form of guided stochastic 
search algorithm have been successfully applied to these problems. While many design optimization approaches are 
limited to a small number of continuous design variables, the approach described here can productively search over 
hundreds at a time. The power of classical evolutionary algorithms can be increased by allowing flexible design 
variable decomposition and incorporating classical local optimization methods and/or by embedding them within 
adaptive agents, which communicate but work semi-independently on a common problem. The authors have 
developed a system that allows for flexible design variable decomposition while combining evolutionary algorithms 
with local optimization. Within this approach, autonomous agents break down a problem hierarchically, using 
problem-specific divide-and-conquer rules to organize design variables and design criteria into a set of highly 
decomposed, overlapped relationships. These agents simultaneously search a discretized design space at various 
levels of resolution and use different design variable representations, performance measures (combinations of 
objectives and constraints), and local search methods. The agents exchange information about the decomposed 
solution space with each other, helping them jointly to satisfy multiple constraints and objectives. This technology 
has been implemented into a software code called HEEDS (Hierarchical Evolutionary Engineering Design System), 
which can be run on a single processor or in a networked computing environment, including clusters of personal 
computers or simple networks of workstations. Using LS-DYNA explicit as the finite element solver within the 
HEEDS optimization environment, this process has been applied to several automotive lower compartment rail 
designs, resulting in significant gains in performance along with up to 20% reductions in mass compared to baseline 
rails designed by experienced engineers. An example application of this method is described herein.  
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INTRODUCTION 

The design of modern vehicle structures is driven by many competing criteria: improved safety and fuel efficiency, 
lower cost, enhanced performance, and increased styling flexibility. In addition, the introduction of new 
manufacturing processes and materials significantly increases the available design space, or the set of all possible 
designs for a problem. In order to explore this large design space more effectively while trying to reduce design 
cycle times, engineers often try to take advantage of automated design optimization and simulation software tools. 
These tools can greatly decrease the time required to identify a set of feasible, or even near-optimal, designs prior to 
building and testing the first prototype.  

Optimizing multifunctional, energy-absorbing structures in a vehicle proves to be a major challenge to safety 
engineers and to automated design techniques. For example, energy-absorbing structures should maintain their 
rigidity while carrying the anticipated in-service loads and while serving as primary mounting locations for 
numerous functional devices and attachments, such as the engine in an automobile or a passenger seat in a 
helicopter. Yet these same structures must collapse in a prescribed manner during a crash to maximize the amount of 
energy absorbed by the structure and to limit the forces transmitted to passengers.  

Objectives and constraints related to crash energy management, stiffness, strength, and packaging are joined by 
additional requirements on manufacturability, noise and vibration, mass reduction, and robustness against process 
and material variation. These objectives compete strongly against one another, making this a very challenging multi-
objective optimization problem.  
 
Energy-absorbing structures often take the form of thin-walled tubular metallic structures subjected to dynamic 
compressive loads. In this case, energy is absorbed primarily through plastic deformation of the material and friction 
due to surface contact. The ideal mode of failure is one of progressive short-column buckling, which maximizes 
plastic material deformation and folding contact.  
 
Stability or buckling behavior can be very sensitive to geometrical and material imperfections, which may prevent a 
part from failing in the way it was intended. Therefore, it is not sufficient to find a design that performs well under a 
set of narrowly defined objectives, constraints, and loading conditions. The structure should be somewhat insensitive 
to variations in the objective measures, constraints, and loadings, to eliminate such variations as additional causes of 
failure. The design of energy-absorbing tubular structures must ensure that their collapse or buckling mode is not 
sensitive to expected variations in material properties, wall section thickness, cross-sectional shapes, or overall tube 
curvature. The structure should also be robust enough to absorb similar amounts of energy under a wide variety of 
off-axis dynamic loading scenarios.  
 
Crashworthiness problems, which are highly dynamic,  are characterized by a very complex design space with many 
peaks and valleys. These classes of structural design problems, which have a very multi-modal, non-convex design 
spaces do not lend themselves well to classical gradient techniques. Evolutionary-based design approaches that 
employ a form of guided stochastic search algorithm have been successfully applied to these problems. While many 
design optimization approaches are limited to a small number of continuous design variables, the approach 
described here can productively search over hundreds at a time. 
 
The power of classical evolutionary algorithms can be increased by allowing flexible design variable decomposition 
and incorporating classical local optimization methods and/or by embedding them within adaptive agents, which 
communicate but work semi-independently on a common problem. The authors have developed a system that allows 
for flexible design variable decomposition while combining evolutionary algorithms with local optimization. Within 
this approach, autonomous agents break down a problem hierarchically, using problem-specific divide-and-conquer 
rules to organize design variables and design criteria into a set of highly decomposed, overlapped relationships. 
These agents simultaneously search a discretized design space at various levels of resolution and use different 
design variable representations, performance measures (combinations of objectives and constraints), and local 
search methods. The agents exchange information about the decomposed solution space with each other, helping 
them jointly to satisfy multiple constraints and objectives. 
 
This technology has been implemented into a software product called HEEDS (Hierarchical Evolutionary 
Engineering Design System), which can be run on a single processor or in a networked computing environment, 
including clusters of personal computers or simple networks of workstations. Various agents can evaluate potential 
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designs with different design variable representations and performance measures. Each design variable 
representation can employ a different number of design variables of the overall problem while each performance 
measure might use only a subset of the technical objectives and constraints. For example, this approach has the 
capability to seek independently a set of good designs for each single technical objective and constraint set with a 
small number of coarse design variables, while aggregating sets of sub-optimal solutions for all performance 
measures in a stochastic manner, allowing economical emergence of solutions with a larger number of design 
variables that satisfy all constraints and are driven by all technical objectives.  
 
Using LS-DYNA explicit as the finite element solver within the HEEDS optimization environment, this process has 
been applied to several automotive lower compartment rail designs, resulting in significant gains in performance 
along with up to 20% reductions in mass compared to baseline rails designed by experienced engineers. These 
achievements were realized through cross-sectional shape, material, and spot-weld optimization. In contrast, 
optimization of only material properties, spot welds, and section thickness in a rail with fixed cross-sectional shape 
will typically yield much lower performance improvements, even if mass is not reduced. An example application is 
described herein. 
 

APPROACH 
 
HEEDS was used to design several automotive lower compartment rails using LS-DYNA explicit as the finite 
element solver. HEEDS found cross-sectional shape, material, and spot-weld placements that dramatically increased 
the amount of crush-zone energy in the front of the rail for direct and offset crash scenarios with inequality 
constraints on the peak rigid wall force and on the mass. First, component level simulations of a vehicle front rail 
were developed for direct and offset crash scenarios. HEEDS was then used to automate the creation and evaluation 
of each potential design to perform design optimization.  
 
Component Level Simulation of Vehicle Front Rail 
A component level simulation of a vehicle front rail for multiple crash scenarios was performed with LS-DYNA 
(LSTC, 2000). A lumped mass was placed at various offset positions at the rear of the rail structure to allow 
simulation of multiple crash scenarios (see Figure 1). The rail structure and mass were given an initial velocity and 
crushed into a rigid stationary wall as depicted in Figure 1. The crush-zone energy, peak rigid wall force, and mass 
were computed with LS-DYNA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Y 

Z Z 

 

Figure 1. Two open “L” shaped surfaces are welded together to create a closed 
surface. The rail structure is crushed into the rigid wall due to the initial velocity of 
the system. The lumped mass is positioned at the end of the structure at various “Y” 
offsets to create the direct and the offset cases. The peak crush force is measured at 
the rigid wall while the internal energy is measured in the crush-zone. 

Lumped mass 

Initial velocity 

Crush-zone 

Rigid wall 



Crash/Safety (2) 7th International LS-DYNA Users Conference 
 

7-18 

Design Optimization with HEEDS 
Many optimization studies have shown that no single optimization approach performs best on all classes of 
problems, but combining a set of global and local optimization techniques often yields good results (Koch et al., 
2002). This situation often creates significant confusion and can be misleading to inexperienced users of 
optimization software. In addition, for problems that contain many design variables and criteria, it is often helpful to 
decompose the overall problem into a set of smaller, more tractable problems to obtain improved results with 
reasonable computational resources. The software package, HEEDS (ACD Associates, 2002), has been constructed 
to hierarchically decompose problems while automatically combining the strengths of global exploration and local 
optimization algorithms. HEEDS combines the strengths of genetic algorithms (Holland, 1975), simulated annealing 
(Ruthenbar, 1989), sequential quadratic programming (Schittkowski, 1985), design of experiments (Cochran et al.., 
1992), response surface methodology (Khuri et al., 1996), and neural networks (Masters, 1993).  
 
HEEDS creates adaptive autonomous agents that communicate but work semi-independently on a common problem, 
employing a communication topology determined by default settings or custom tailored by the user. Each agent (or 
group of agents) can employ specialized search heuristics that seek to maximize the performance of its 
representation of the problem. For instance, Figure 2 depicts a topological structure composed of nine agents that 
share information in a hierarchical manner.  They independently seek a set of good designs for each single technical 
objective and constraint set with a small number of coarse design variables, while aggregating sets of sub-optimal 
solutions for all performance measures in a stochastic manner, allowing economical emergence of solutions with a 
larger number of design variables that satisfy all constraints and are driven by all technical objectives. Each agent 
was executed as a separate computer process on a loosely coupled network of personal computers (550 MHz). 
Designs are shared periodically in a structured manner from agent-to-agent according to the arrows in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Agents 0 through 5 represent the overall problem with a total of 42 design variables (24 control points, 12 spot-
welds, 4 material properties, and 2 gage thicknesses, see Figure 3). Agents 6 through 9 represent the overall problem 
with 78 design variables (60 control points, 12 spot-welds, 4 material properties, and 2 gage thicknesses, see Figure 
4). A mapping of the control point design variable decomposition is depicted in Figure 5. 
 
Agents 0 through 2 seek to maximize the amount of crush-zone energy in the front of the rail for crash scenarios 
with inequality constraints on the peak rigid wall force and the mass, considering a small period of crush time (6 
ms); while agents 4 through 9 consider a larger period of time (12 ms). The agents are grouped such that agents 0, 3, 
and 6 consider only the direct load case crash scenario (lumped mass is placed directly behind the rail) with 
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Figure 2. A HEEDS agent topology that decomposes the problem in terms of total 
number of design variables, total crush time, and design criteria. Designs are shared 
periodically from agent to agent according to the arrows. Each agent is executed on 
a separate personal computer within a network. This topology employs search agents 
that independently seek a set of good designs for each design criterion with a small 
number of coarse design variables, while aggregating sets of sub-optimal solutions 
for all performance measures in a stochastic manner, allowing economical 
emergence of high performing solutions with a larger number of design variables. 
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deterministic design variables. Agents 2, 5, and 8 consider only the offset load case crash scenario (lumped mass is 
placed behind the rail at an offset) with deterministic design variables. Agents 1, 4, and 7 consider each load case as 
a stochastic variable and allow each design variable to behave in a stochastic manner. In essence, this topology’s 
agents seek to maximize the performance of the rail structure while avoiding designs that are sensitive to variation 
of the design variables and load cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Coarse representation of two “L” shaped spot welded open surfaces depicted with six 
control cross-sections per open surface.  Control points surrounded by a box define master-slave 
conditions (which can be used to impose desired symmetries or equality constraints on the problem). 
Due to the master-slave conditions defined, there are four control point design variables for each 
control cross-section (a total of twenty-four control point design variables). The two “L”-shaped open 
surfaces have different gauge thicknesses, Young’s moduli, and yield strengths (six additional design 
variables). Twelve sets of spot weld design variables have been defined and depicted as short dark 
lines at various points along the length of the rail structure at the seams of the two open surfaces 
(twelve additional design variables). 

Figure 4. Refined representation of two “L” shaped spot welded open surfaces depicted with six control 
cross-sections per open surface.  There are ten control point design variables for each control cross-section 
(a total of sixty control point design variables). The two “L”-shaped open surfaces have different gauge 
thicknesses, Young’s moduli, and yield strengths (six additional design variables). Twelve sets of spot weld 
design variables have been defined and depicted as short dark lines at various points along the length rail 
structure at the seams of the two open surfaces (twelve additional design variables). 
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Figure 5. A planar view of the control cross-sections of each open surface with labeled control 
points. For this example, control points 1, 7, 8, and 14 remain fixed. The dotted boxes around 
the control points show the master-slave conditions imposed on the control points in the 
coarse design representation. In the coarse representation, control points 3, 4, and 5 are slaves 
to master control point 2 – i.e., they are displaced identically to point 2. Similarly, control 
points 10, 11, and 12 are slaves to master control point 9 in the coarse representation. Control 
points 2-6 and 9-13 are offset independently in the refined representation.  

 

Figure 6. These progressive short-column buckling modes of crush depicted are inherently 
robust against off-axis dynamic load cases. Energy is absorbed primarily through plastic 
deformation of the material and friction due to surface contact through the progressive 
accordion-like deformation. These accordion-like deformation modes help to maximize the 
plastic material deformation and folding contact during off-axis and direct axis crash 
scenarios.  
 

Offset load case Direct load case 
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DISCUSSION OF RESULTS 
 
Many high-performance designs were found during the run, since HEEDS evolves a set of designs over a period of 
generations. Figure 6 depicts the animation of crush for the best overall design found by HEEDS for the direct and 
offset load cases. For both the direct and offset load cases, the design crushes progressively in an “accordion” 
fashion from the front to the rear of the structure, primarily due to the structure’s shape. These progressive short-
column buckling modes of crush depicted in Figures 6 are inherently robust against off-axis dynamic load cases. 
Energy is absorbed primarily through plastic deformation of the material and friction due to surface contact through 
the progressive accordion-like deformation. These deformation modes help to maximize the plastic material 
deformation and folding contact during off-axis and direct axis crash scenarios.   
 

SUMMARY 
 
HEEDS was applied to a crashworthiness problem, using various search agents to evaluate potential designs with 
different design variable representations and performance measures. Each successive design variable representation 
increased the total number of design variables of the overall problem, while each performance measure used a subset 
of the technical objectives and constraints.  
 
For this example, HEEDS created search agents that independently sought a set of good designs for each single 
technical objective and constraint set with a small number of coarse design variables, while aggregating sets of sub-
optimal solutions for all performance measures in a stochastic manner, allowing economical emergence of solutions 
with a large number of design variables that satisfy all constraints and are driven by all technical objectives.  
 
Agents in the HEEDS topology (see Figure 2) maximized the amount of crush-zone energy in the front of the rail for 
stochastic crash scenarios with inequality constraints on the peak rigid wall force and on the mass. In essence, the 
agents in the HEEDS topology sought to maximize the performance of the rail structure while avoiding designs that 
are sensitive to variation of the design variables and load cases. 
 
It is not sufficient to find a design that performs well under a set of narrowly defined objectives, constraints, and 
loading conditions. The structure should be somewhat insensitive to these variations, to eliminate these as major 
factors in the failure. 
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