
7th International LS-DYNA Users Conference Computing Technology

 18-7

Performance Analysis and Tuning of LS-DYNA*
for Intel® Processor-Based Clusters

George Chaltas
Intel Corporation, DP2-230

2800 Center Dr.
DuPont, WA 98327

253-371-7168
George.Chaltas@intel.com

W. R. Magro
Intel Americas, Inc.

1906 Fox Drive
Champaign, IL 61820

217-356-2288
Bill.Magro@intel.com

Abbreviations
MPI: Message Passing Interface
CPU: Central Processing Unit
SIMD: Single Instruction Multiple Data
SSE: Streaming SIMD Extensions
IBA: InfiniBand Architecture
VIA: Virtual Interface Architecture
VIPL: Virtual Interface Provider Library

Keywords
Cluster, Performance, Intel, MPP-DYNA

ABSTRACT

Using Intel software tools, including Intel® VTune™ Performance Analyzer and Intel® Fortran Compiler, we
analyze and tune the performance of MPP LS-DYNA* for clusters of Intel processors. We discuss the impact of
various performance features of Intel processor-based systems, including vector/streaming instructions, on real LS-
DYNA workloads. We compare single-precision performance and measure the impact of various cluster
interconnect technologies.

Computing Technology 7th International LS-DYNA Users Conference

18-8

INTRODUCTION

Clusters of relatively inexpensive, general-purpose computers are now able to perform tasks that once required
specialized (and expensive) hardware. Using software such as the MPI implementation of LS-DYNA, a modest
cluster of Intel® Xeon™ processors can perform analyses both more quickly and more cost effectively than the
supercomputers that were until recently used for this purpose. Apart from faster CPUs, the main opportunities for
improvement lie in the cluster interconnect technology (both hardware and software) and in the performance of the
software running on each node. We have investigated both areas, and the latest versions of LS-DYNA now
incorporate some improvements resulting from these investigations.

Conventions
Within this paper, we have adopted the following conventions. Unless otherwise stated, all software commands and
command-line options are for software running on the Red Hat* Linux operating system. Performance is measured
as elapsed (wall-clock) time to complete a workload, however elapsed times are not stated. The performance of
systems and software are compared and expressed as ratios. The configurations under consideration are stated
along with the performance data. While most of the workloads used for performance measurement and analysis are
publicly available, others are not. The workloads used are described in the appendix.

Benchmark Disclaimer

Performance tests and ratings are measured using specific computer systems and/or components and reflect the
approximate performance of Intel® products as measured by those tests. Any difference in system hardware or
software design or configuration may affect actual performance. Buyers should consult other sources of information
to evaluate the performance of systems or components they are considering purchasing.

Because LS-DYNA is a large, complex application with a broad range of features, the measurements of performance
enhancements discussed in this paper are specific to the workloads used.

APPROACH

In mid-2001, we became aware that the performance of a cluster of Intel® Xeon™ processor-based systems running
LS-DYNA (v940.2a, single-precision), while good, did not meet our expectations. Accordingly, we undertook an
analysis of the problem and worked with engineers at LSTC to effect improvements. We investigated both single-
node and cluster performance. Single-node performance improvements have focused primarily on the compilation
of LS-DYNA*; cluster performance has been investigated within the context of MPI implementations and
interconnect technology. We worked in both the Linux* and Microsoft Windows* environments, but focused
primarily on the former.

SINGLE-NODE PERFORMANCE

Performance of clusters of Intel® Pentium® III processors and Pentium® III Xeon™ processors running LS-DYNA
was generally considered to be good, but Intel® Xeon™ processors and Intel® Pentium® 4 processors did not meet
our expectations for relative performance on systems with these faster processors and their increased memory
bandwidth. Important differences exist between the micro-architectures of these processor families; accordingly,
our investigation focused on these differences. The primary tools for addressing such architectural differences are
compilers. Intel has developed a family of compilers (available for both the Linux and Microsoft Windows*
operating systems) for precisely this reason; these compilers are aware of the performance characteristics of broad
range of Intel processors and produce code specifically tuned for them. Since we desired that our work ultimately
result in performance enhancements to the LS-DYNA product, we placed the following constraints upon this effort:
first, the resulting binary should run well on a broad range of processors; second, only minimal source code
modifications would be considered. To include the overhead of the MPI library, but avoid any affects due to cluster
interconnects, we used the MPI version for this testing and analysis, but confined our tests to a single node with two
CPUs.

7th International LS-DYNA Users Conference Computing Technology

 18-9

Features of Intel® Pentium® 4 processors and Intel® Xeon™ processors

Intel® Pentium® 4 processors and Intel® Xeon™ processors share a common microarchitecture (called Intel®
NetBurst™) and a similar feature set. The primary difference is that Intel® Xeon™ processors are intended for
multiple-CPU systems, whereas Intel® Pentium® 4 processors are designed for single-CPU systems. The
processors have similar performance characteristics, and the performance work described in this paper applies to
both processor families. The following are some common characteristics of the current generation of these
processors1:

• Intel® NetBurst™ microarchitecture
• 400 MHz System Bus
• Level 1 Execution Trace Cache
• 8 KB Level 1 Data cache
• 512 kB Level 2 Advanced Transfer Cache2 - 8-way set associative, 128 Byte lines
• Streaming SIMD Extensions 2 (SSE2) [superset of SSE]

SSE2 instructions extend the SSE instructions implemented in the Intel® Pentium® III processor. They incorporate
single-precision floating-point vectors (length 4), double-precision floating-point vectors (length 2), and integer
vectors of various lengths. The aggregate vector length for all data types is 16 bytes, corresponding to the size of
the registers used to implement these instructions. For more information on these instructions see IA-32 Intel®
Architecture Software Developer’s Manual, Volume 1: Basic Architecture.

Targeting Intel® NetBurst™ Microarchitecture processors

The Intel® Fortran Compiler is able to generate SSE2 instructions, and effectively using these vector instructions
was critical to success. Since we focused on the single-precision version of LS-DYNA* and wished to maintain
binary compatibility with Intel® Pentium® III processors, we constrained our work to the SSE subset. The
compiler is also able to optimize its code scheduling for particular processor families while maintaining
compatibility with others. We used this feature to target the Intel® Pentium® 4 and Xeon™ processors. The
compiler options used to accomplish this are as follows:

• -xK : use SSE instructions (compatible with Intel® Pentium® III or later processors)
• -tpp7 : optimize instruction generation for Intel® Pentium® 4 or Xeon™ processors.

Using these options with the Intel® Fortran Compiler 5.0 for Linux*, we were able to achieve a modest
improvement in LS-DYNA 940.2 performance, in the range of 6% to 9%. This gain was less than we expected, but
suggested that we were on the right path. Because LS-DYNA version 960 was nearing release, we refocused our
efforts on that version.

Hotspot Analysis

The next step was to use the Linux hierarchical profiler, gprof, to identify the parts of LS-DYNA 960 that were
taking the most time. From its output, we determined that over 60% of the run time in our Small Car workload was
spent in only six functions:

Table 1: Function Hotspots

Function Name %Time
shl24s 16.24
trnfbt 14.32
tranbt 11.58
blytsy 10.35

elem2d 6.96
tbscls 5.52

1 A broader overview of processor features may be found in Intel® Xeon™ Processor with 512 KB L2 Cache for
Applied Computing Product Brief.

2 Earlier processors in this family have 256 kB Level 2 cache

Computing Technology 7th International LS-DYNA Users Conference

18-10

Repeating the analysis with a broader set of workloads confirmed the importance of these functions and identified a
few more. By comparing this data with profiling data gathered on other systems, we determined that several of
these functions were running approximately half as fast as we might expect.

Root Cause Analysis

To systematically identify and correct the performance problems, we turned to the Intel® VTune™ Performance
Analyzer (hereafter referred to as VTune™). Intel® Pentium® 4 and Xeon™ processors incorporate programmable
hardware performance counters that can be used to monitor a variety of events, from clockticks (the processor’s
internal clock) to cache behavior. Using VTune, occurrence of these events can be correlated closely to small
groups of instructions in program code. If the executable contains debug information, VTune is also able to map
these events to specific areas of program source code. VTune enabled us to quickly identify not only the functions
that took the most time, but also the responsible lines of code within these functions. Once problem areas were
identified, we began the search for causes. This search was fairly extensive, but focused initially on the following
kinds of events:

• Mispredicted branches
• Level 2 cache misses
• Level 1 data cache misses
• Trace cache misses
• Store-forward
• Split cache lines
• 64K aliasing

These events – and techniques to ameliorate their effects – are described in the Intel® Pentium® 4 and Xeon™
Processor Optimization Reference Manual,

To evaluate the effect of these events, we used VTune™ to map both the occurrence of clockticks and the events
under consideration to specific areas of code. Areas where the elapsed time (clocktick count) is disproportionately
high can be performance problems or simply areas of code that execute frequently. Potential causes of problems are
suggested by corresponding high values in the event counters listed above. For example, a disproportionate number
of L2 cache misses per clock tick would suggest a cache utilization problem. While all of these events occur to
some extent in LS-DYNA* (and indeed in nearly all programs) VTune showed that most of them did not occur with
undue frequency, if at all, in the problem areas of LS-DYNA.

Thermal Throttling

Intel® Pentium® 4 and Xeon™ processors have the ability to reduce their clock speed to prevent overheating,
resuming normal operation once they are sufficiently cooled. Although this thermal throttling should not occur in a
properly cooled system, we checked for and ruled out its presence. VTune has no mechanism to check for thermal
throttling, so we used a special tool (not generally available) to determine that thermal throttling was not taking
place.

Vectorization

Since the –xK compiler option enables the compiler’s vectorizer, we checked to determine how effectively the
vector SSE instructions were being used, using VTune to count the relative number of vector SSE, scalar SSE, and
X87 instructions retired. Only vector SSE instructions lead to improved throughput. We discovered that the slowest
parts of the functions identified above made little if any use of these vector instructions. We focused on the
slowest, most time-consuming loop and observed that it performed substantial data movement. Each iteration, read
from several arrays, calculated a few intermediate results, and stored results to 18 separate arrays. Because the loop
bounds were passed as parameters to the function and the number of arrays accessed was relatively large, the
compiler was unable to determine if this loop would perform well if vectorized and so declined to do so.

7th International LS-DYNA Users Conference Computing Technology

 18-11

Write Combining

Examining the memory addresses in a debugger revealed that each of the target addresses stored to in one loop
iteration lay on a different cache line. Intel® Pentium® 4 and Xeon™ processors perform write combining in
hardware, aggregating a number of small, contiguous writes into a single, larger write to make better use of cache
bandwidth. Non-contiguous storage patterns such as this can preclude write combining, as the Intel® NetBurst™
microarchitecture maintains only six buffers for write combining and a large number of target addresses results in
frequent flushing of these buffers. The Intel® Pentium® 4 and Xeon™ Processor Optimization Reference Manual
recommends applying loop fission in such cases, but vectorization can also help. Scalar single-precision floating-
point instructions can store or load only four bytes at a time, whereas vector instructions can load or store 16 bytes.
Using vector instructions effectively reduces the number of store operations by a factor of four, making more
effective use of write combining and available cache bandwidth.

Solution

Manually splitting many loops would violate our goal of minimizing source code modifications, so we applied it on
only the most critical location and focused instead on increased vectorization as the primary mechanism for
improving performance. The Intel® Fortran Compiler can report which loops it vectorizes, which it does not, and
why. Enabling this report, via the –vec_report3 compiler option, indicated that the compiler believed that
vectorization of these key loops would be inefficient. Fortunately, the compiler supports a directive
(!DIR$VECTOR ALWAYS) to override this heuristic. After applying this directive, we observed a roughly four-
fold increase in the performance of the most critical loop. We reproduced the behavior in a separate test case, to
ensure the future releases of the compiler will be able to identify this optimization without the use of directives.
Additional vectorization yielded similar improvements. The resulting improvement in LS-DYNA* performance on
our test cases is shown below.

Cache Blocking

With the main performance problem resolved, we turned our attention to cache blocking. LS-DYNA blocks its data,
gathering it into several contiguous arrays of size N to achieve better cache utilization and facilitate vectorization.
Cache size is a consideration; it is highly advantageous for all the blocked data to fit within the L2 cache. Within
that constraint, it is advantageous to use the largest possible blocking size. The latest Intel® Xeon™ processors
(and Intel® Pentium® III Xeon™ Processors) have 512KB L2 cache, twice that of their predecessor. Accordingly,
we tuned the cache blocking for this size cache. For some workloads, this may result in slight performance
degradation on earlier processors with smaller cache. We also tuned cache blocking to improve utilization of the
processor’s floating-point vector instructions. We tested a broad range of blocking sizes and observed that the best
performance was achieved when the array size, N, was an integer multiple of the SIMD vector size (four).

Results

The results of this optimization work were incorporated in LS-DYNA 960 build 1145, which was built with the
Intel® Fortran Compiler V6.0. To illustrate the difference, we compared this with build LS-DYNA 960 build 447,
which was built with an earlier version of the Intel® Fortran Compiler and without any of the tuning described
above. The tables below illustrate the relative performance of these two builds, on systems with pairs of three
different Intel® Xeon™ processors. Numbers greater than 1.0 indicate increased performance of LS-DYNA 960
build 1145 over LS-DYNA 960 build 447.

The latest Intel® Xeon™ processors were the primary focus of our optimization efforts. Cache blocking in build
1145 was tuned for the 512KB L2 cache size of these processors

Computing Technology 7th International LS-DYNA Users Conference

18-12

Table 2: Relative Performance
LS-DYNA* 960 447 P4 vs. LS-DYNA* 960 1145 SSE
Two 2.2 GHz Xeon™ Processors (Configuration A)

Small
Car A

Caravan Bogie20 Pendulum PCB rp_lsd93 Small
Car B

1.31 1.20 1.14 1.01 1.25 1.19 1.45

Since a specific goal of this effort was to maintain compatibility with Intel® Pentium® III processors, we evaluated
the two builds of LS-DYNA on a system equipped with two 1.4 GHz Intel® Pentium® III Xeon™ processors.
These processors also have 512KB L2 cache.

Table 3 Relative Performance
LS-DYNA* 960 447 vs. LS-DYNA* 960 1145 SSE

 Two 1.4 GHz Intel® Pentium® III Xeon™ Processors (Configuration C)

Small
Car A

Caravan Bogie20 Pendulum PCB rp_lsd93 Small
Car B

1.09 1.13 1.11 1.04 1.05 1.06 1.34

Finally, since this effort was specifically focused on improving LS-DYNA performance on Intel® Xeon™
processors, it is interesting to compare the performance measured at the beginning of this effort (LS-DYNA 960
447, 1.7 GHz Intel® Xeon™ processors) against the performance measured at the conclusion (LS-DYNA 960 1145,
2.2 GHz Intel® Xeon™ processors). The combination of updated software and faster processors demonstrates
improvement well above that expected from clock speed improvements alone (2.2 / 1.7 = 1.294) across all six tested
workloads.

Table 4: Overall Change in Performance
Two 1.7 GHz Intel® Xeon™ Processors (Configuration B), LS-DYNA 960 447 P4

Two 2.2 GHz Intel® Xeon™ Processors (Configuration A), LS-DYNA 960 1145 SSE

Small
Car A

Caravan Bogie20 Pendulum PCB rp_lsd93 Small
Car B

1.77 1.71 1.52 1.41 1.68 1.84 1.96

7th International LS-DYNA Users Conference Computing Technology

 18-13

Table 5: System Configurations

Configuration A

Two 2.2 GHz Intel ® Xeon™ processors

512 KB L2 cache

1 GB 800MHz RDRAM

IWILL* DX400-SN motherboard

 Intel® 860 chipset

 18 GB SCSI-LVD Disk

Red Hat* Linux 7.2

LAM MPI 6.5.2

Configuration B

Two 1.7 GHz Intel® Xeon™ processors

256KB L2 cache

1 GB 800MHz RDRAM

IWILL* DX400-SN motherboard

Intel® 860 chipset

18 GB SCSI-LVD Disk

Red Hat* Linux 7.2

LAM MPI 6.5.2

Configuration C
Two 1.4 GHz Intel® Pentium® III processors

512KB L2 cache

1 GB 133MHz SDRAM

Intel® Server Board SCB2

ServerWorks* Enterprise Serverset* III HE-SL chipset

18 GB SCSI-LVD Disk

Red Hat* Linux 7.2

LAM MPI 6.5.2

Computing Technology 7th International LS-DYNA Users Conference

18-14

Cluster Scaling

The MPP version of LS-DYNA* is capable of exploiting clusters of connected systems to improve turnaround time
for suitably large analyses. The speed of the cluster interconnect – normally characterized by its latency and
bandwidth – largely dictates the extent to which the completion time of a given workload can be further decreased
by utilizing additional processors. Low latency, the time to send an empty message from one host to another in the
cluster, and high bandwidth, the asymptotic transfer rate for large messages, are characteristics normally found in a
high-performance interconnect.

Interconnects for Message Passing

Users of MPP-DYNA* on clusters benefit from high-speed interconnects through shortened turnaround time on
jobs. While a number of proprietary interconnects are available that each handily outperform standard Ethernet, no
single interconnect has emerged as standard. As a result, many clusters are simply connected using standard
100BaseT Ethernet*.

While the performance of the proprietary interconnects is often excellent, there exist some drawbacks in their use for
both software vendors and end users. Normally, each interconnect is accompanied by its own MPI libraries, forcing
software vendors unable to support all available interconnects to choose a subset, leaving some unsupported. Worse,
the myriad choices drive some vendors to support only the least common denominator, MPI over TCP/IP, to achieve
broader hardware support at the expense of performance. Likewise, end users suffer when their chosen interconnect
is supported by only a subset of the software packages needed in their work. Proprietary interconnects have other
disadvantages, including limitations on simultaneous multi-user access or limited ability to simultaneously handle
MPI, TCP/IP, and NFS or other shared I/O traffic.

InfiniBand Architecture

A new industry standard interconnect architecture, InfiniBand Architecture* (IBA), has several key features that
give it the potential to address these shortcomings. Most important among these is IBA’s notion of virtual channels,
which presents to each process the illusion of a dedicated interconnect. This, when paired with IBA’s low latency,
high bandwidth design, allows multiple users and the operating system to simultaneously and transparently share a
single interconnect. On IBA-connected systems, networking, message passing, and shared disk I/O traffic run over a
single wire. Further, because IBA is a multi-vendor, industry standard, host adapters and switches from multiple
sources interoperate, presenting a single and common high performance interconnect for end users to install and
software vendors to support.

Message Passing over InfiniBand Architecture
To demonstrate the impact of a fast interconnect on LS-DYNA* performance, we measured the parallel speedup of
a small workload on an cluster connected with both 100BaseT switched Ethernet and Intel InfiniBand Architecture
host channel adapters. We used Argonne’s MPIch implementation with NCSA’s VMI 1.0 abstract device
implementation. VMI differs from most MPIch devices in its ability to target multiple interconnects without
rebuilding the application. This approach offers a key advantage for software vendors, since a single validated
executable can target both standard and proprietary interconnects, while maintaining the performance characteristics
of each. Rather than hard code the communications library, VMI instead implements a thin communication wrapper
layer that determines the fastest interconnect between each pair of processes and automatically loads shared libraries
to support that connection. VMI provides communication libraries for TCP/IP, shared memory, and a number or
high-speed interconnects, including InfiniBand adapters via the Intel™ Virtual Interface Provider Library (VIPL)3.
New communication libraries are simple to write. For this work, we used shared memory to communicate within
each dual-processor node and compared TCP/IP to InfiniBand for inter-node communication.

3 These tests were performed on Microsoft Windows 2000 Advanced Server, due to the earlier availability of IBA
VIPL libraries on this platform. VIPL is now available for both Windows and Linux.

7th International LS-DYNA Users Conference Computing Technology

 18-15

Point-to-Point Latency and Bandwidth

We began by measuring the pair wise, inter-node performance of TCP/IP over 100BaseT and VIPL over IBA, using
a standard “ping-pong” test, in which a message is sent from one host to another, then echoed back to the original
host. The total time is measured for a range of message sizes, and half the round-trip time is taken as the one-way
measurement. The results are presented in Figure 1. The y-intercept of the curves is the latency, the time to send an
empty message, while the asymptotic slope is inversely related to the bandwidth rate for large messages. A flatter
curve with smaller intercept indicates better performance. The VIPL/IBA device achieves a latency of less than 17
microseconds, compared with 152 microseconds TCP/IP over 100BaseT Ethernet. The VIPL/IBA device also
achieves better performance for large messages, achieving over 135 MB/s compared with 9.5 MB/s for Ethernet.4

MPI Ping Pong Test

1

10

100

1000

10000

0 5000 10000 15000 20000 25000 30000 35000 40000

Message size (bytes)

E
la

p
se

d
 T

im
e

(u
se

c)

100BaseT Ethernet (TCP/IP)

InfiniBand Architecture (VIPL)

Figure 1 : Comparative performance of point-to-point messaging over Ethernet and InfiniBand Architecture
interconnects. Ethernet performance was measured using TCP/IP as the connection transport through a
dedicated 100BaseT switch. InfiniBand* Architecture performance was measured using VIPL as the
connection transport through a dedicated InfiniBand Architecture switch. The y-intercept is the zero message
size latency. Lower is better. The slope (when plotted linearly) is the inverse bandwidth. Flatter is better.

Scaling Results

This point-to-point message performance is expected to translate into improved parallel application speedup in LS-
DYNA*, so we next measured the completion times of a small workload. We intentionally chose a small problem to
illustrate the impact of interconnect performance on speedup. The rp_lsd93 model represents the impact of a small
car with a rigid pole, but it has only 5,400 elements. For this test, we again measured the performance of TCP/IP
over 100BaseT and VIPL over IBA. The performance results are illustrated in Figure 2, where we see that 100BaseT
Ethernet achieves speedup on two and four processors. For more processors, the elapsed time actually begins to
increase, as the inter-node communication time begins to dominate the computation. The much faster messaging
performance of IBA, however, shows continued performance improvements up to 14 processors, which is perhaps
surprising, given the small size of the workload. To achieve these results, we used the default domain decomposition

4 An InfiniBand 1X link operates at a line speed of 2.5 Gbits/second in each direction. Consequently, throughput of
as much as 300 MB/second is possible. The result of 135 MB/sec was achieved with first generation hardware from
Intel’s InfiniBand Product Development Kit. Future hardware is expected to deliver significant improvements in
bandwidth. Achieving the full line speed is not possible, due in part to MPI’s two-sided communication protocol,
which requires at least one extra message or one buffer copy to deliver a message. The InfiniBand specification also
defines 4X and 12 X connections, which provide four and twelve times the bandwidth of a 1 X, link, respectively.

Computing Technology 7th International LS-DYNA Users Conference

18-16

settings, but supplied the “pfile” option to specify a local directory on each node for scratch space. Writing scratch
files to a shared file system normally decreases parallel performance, particularly for the large cluster
configurations.

MPP-DYNA Parallel Performance
(WPI rp_lsd93, 17,500 Cycles)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 10 14

Number of CPUs

E
la

p
se

d
 T

im
e

(s
)

100BaseT Ethernet (TCP/IP)

InfiniBand Architecture (VIPL)

Figure 2 : Comparative speedups of the WPI rp_lsd93 small car crash test case over Ethernet* and
InfiniBand* Architecture interconnects. The network configuration was the same as used in the point-to-
point measurements in Figure 1. The bars represent relative elapsed time to complete 17,500 cycles. The
Ethernet-connected cluster peaks in performance at 4 CPUs (two nodes); beyond 4 CPUs, the calculation
runs more slowly. The InfiniBand Architecture-connected cluster maintains speedup through 14 CPUs, due
to the lower latency and higher bandwidth of the interconnect.

These performance results show that InfiniBand Architecture is a viable interconnect technology for high
performance computing applications such as MPP-DYNA*.

SUMMARY

Using Intel® software tools, we have analyzed and optimized the performance of LS-DYNA on Intel® Pentium ® 4
and Xeon ™ processor-based systems. These performance improvements have been incorporated into LS-DYNA
960 build 1145.

We have measured the impact of an InfiniBand Architecture interconnect on the scaling behavior of MPP-DYNA.
The low latency and high bandwidth of the interconnect allow even small problems to achieve speedups to 14 CPUs,
while 100BaseT Ethernet peaks at 4 CPUs.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the following individuals. Without their support and assistance our work would
not have been possible:

Drs. John Hallquist, Jason Wang, and Chen Tsay, Livermore Software Technology Corporation
Rob Pennington, Mike Showerman, and Avneesh Pant, National Center for Supercomputing Applications,

University of Illinois.

7th International LS-DYNA Users Conference Computing Technology

 18-17

Clay Breshears, Thomas Huff, Timothy Prince, Kevin B. Smith, and Sreelekshmy Syamalakumari, Intel Corporation

REFERENCES

Intel® Pentium® 4 and Xeon™ Processor Optimization Reference Manual, # 248966-05, © 1999-2002 Intel
Corporation.

IA-32 Intel® Architecture Software Developer’s Manual, Volume 1: Basic Architecture, #245470-006, © 1997-
2002 Intel Corporation.

Intel® Pentium® 4 Processors for Applied Computing Product Brief, #273657-01, © 2002 Intel Corporation.

Intel® Xeon™ Processor with 512 KB L2 Cache for Applied Computing Product Brief, # 273697-01, © 2002 Intel
Corporation.

Intel® Fortran Programmer’s Reference Manual, #687928-5001, © 1996-2001 Intel Corporation

A.J.C. Bik, M. Girkar P.M. Grey and X. Tian. Automatic Intra-Register Vectorization for the Intel(R) Architecture.
International Journal of Parallel Programming, Volume 30, pages 65--98, April 2002.

A.J.C. Bik, M. Girkar, P.M. Grey, and X. Tian. Efficient Exploitation of Parallelism on Pentium(R) III and
Pentium(R) 4 Processor-Based Systems. Intel Technology Journal, February, 2001.

InfiniBand Trade Association, www.infinibandta.org

Workloads

The following table summarizes the data sets and parameters used in the performance analyses described in this
paper.

Table 6: Workload Descriptions

Name Element
Count

ncycles Source Description

Small Car A 430000 Complete Customer
data

A small car striking a rigid
barrier, simulation time .010 sec.

Caravan 329300 5000 NCAC Dodge* Caravan*, detailed model
Small Car B 530000 Complete Customer

data
A small car striking a rigid
barrier, simulation time .030 sec.

Bogie20 1800 80000 NCAC FOIL* Bogie, 20 MPH
Pendulum 2100 Complete NCAC FOIL* pendulum
PCB 23300 60000 NCAC Portable Concrete Barrier
rp_lsd93 5400 Complete5 WPI Small car rigid pole impact

NCAC: National Crash Analysis Center at George Washington University,
http://www.ncac.gwu.edu/archives/model/

WPI: Worcester Polytechnic Institute, http://www.wpi.edu/Academics/Depts/CEE/Roadsafe/bench.html

Software Tools

Intel® VTune™ Performance Analyzer 6.0
Intel® Fortran Compiler for Linux*, 5.01 and 6.0
Available at http://www.intel.com/software/products/index.htm

5 For the scaling studies, the model was terminated after 17,500 cycles.

Computing Technology 7th International LS-DYNA Users Conference

18-18

Intel® VTune™ Performance Analyzer, Intel® Fortran Compiler, Intel® Xeon™ Processor, Intel®
Pentium® III Processor, Intel® Pentium® III Xeon™ Processor, Intel® Pentium® 4 Processor, and Intel®
NetBurst™ are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

• Other names and brands may be claimed as the property of others.

