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ABSTRACT 
 
The equations of motion for a two-lever pendulum are developed using Lagrange's equation.  An 
assumed kinematic golf swing is used to generate generalized forces to drive the golf robot.  
These moments are used to generate a golf robot swing using LS-DYNA.  The LS-DYNA model 
is flexible enough so that the model can be used as a virtual laboratory. 
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INTRODUCTION 
 
In the golf industry, equipment is often evaluated using a robot that swings the club to hit the 
ball.  The well known and established robot, called the Iron Byron, is a machine that can be 
modeled as a two-link swing. That is, the left arm is pinned at the center of the swing arc and 
connects to the club with another pin joint. The robot starts stationary from the top of the swing 
and applied moments at the pins drive the rotation the club. Even though it is well known that the 
Iron Byron (two-lever model) does not closely emulate the human golf swing, it is still widely 
used. 
 
One of the most simplistic ways to model a golf swing is with two levers.  The first lever 
represents a right-handed golfer's left arm and is pinned at the shoulder end.  At the end 
representing the hands, a pin joint connects the left arm to the club.  Early and recent work using 
this model involves rigid body levers [1, 2, 3]. The two lever model has two major deficiencies: 
the golf club is far from rigid, and only test robots, like the Iron Byron, swing this way.  
Advantages of the two lever model of the golf swing with rigid elements are in the relatively 
simplistic solutions that may be obtained using Lagrangean dynamics (or Newtonian as well).  
Closed form solutions for the equations of motion may be obtained for over simplistic 
generalized moment functions applied at the shoulder and wrist [1, 2].  Because of this, 
numerical integration of the equations of motion is required for a realistic solution. 
 
Attempts have been made to determine functional form of the generalized moments applied at 
the shoulder and wrist.  This has been done by using stroboscopic photography to determine the 
path of the hands and club head as a function of time.  Using this kinematic data, the forces were 
calculated from the equations of motion. 
 
To address the problem of a rigid club not being realistic, Winfield and Soriano have have used 
finite elements to represent the shaft in what was essentially a two lever model [4].  This model 
was driven by a kinematic assumption on the two generalized degrees of freedom. In addition to 
having a flexible shaft in this model, the club lever had added fidelity in that the shaft mass was 
distributed and the club head was a point mass. 
 
In this paper the Lagrangean equations of motion are developed for a two lever model.  A 
kinematic swing is considered in which the arm and club angles are given prescribed generalized 
displacements and the required generalized forces computed.  This insures the proper release of 
the golf club and meeting of the ball. Inertial properties of the robot and club are used to 
compute moments to drive the robot.  These moments are applied by using load curves and 
LOAD_RIGID_BODY commands. 
 
TWO PENDULUM MODEL 
 
Consider the two lever model as two pendulums pinned together to model the robot golf swing.  
The upper link, which represents the arm, is pinned at the upper end (shoulder) which is 
considered the center of the swing. Label this body A and denote its length as LA.  Define the 
distance from the pinned end to the center of gravity of body A to be dA. The angular position of 
body A  is defined by the angle α it makes with the downward vertical direction. Furthermore, let 
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the arm have mass mA and moment of inertia about the pinned end IA. Note that the moment of 

inertia about the arm's center of gravity is given by 2
A A A AI I m d= − . 

 
The grip end of the golf club is connected to the arm, body A , with a pinned connection.  Label 
the club as body C and denote its length as LC.  The distance from the grip end of the club to the 
club's center of gravity is defined as dC.  Let the angle β define the angular position of the club 
and be defined as the angle the club makes with the downward vertical direction. The mass of the 

club is mC and the moment of inertia about the club's center of gravity is CI . 

 

 
 
Figure 1 Two-lever golf swing model 
 
Having defined the two lever golf swing model as above, the equations of motion can be derived 
and solved subject to various initial and loading conditions.  Lagrange's equations provide a 
convenient means for deriving the basic differential equations and are based on the Lagrange 
function defined by 
 
 L T V= −  (1) 
 
where T is the kinetic energy and V is the potential energy.  The equation of motion for the ith 
generalized coordinate, qi is given symbolically by 
 

 i
i i

d L L
Q

dt q q

 ∂ ∂− = ∂ ∂ &
 (2) 

 
where Qi is the generalized force corresponding to the coordinate qi.  In the two lever golf swing 
model { },iq α β=  with corresponding shoulder and wrist moments, Qα and Qβ, as their 

generalized forces. 
 
The kinetic energy for the two lever swing model described above is 
 

 ( )2 2 2 21 1 1

2 2 2A C C CT I m v Iα α β= + + + && &  (3) 
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where Cv  is the velocity of the club's center of gravity. The velocity component Cv  is easily 

eliminated from the kinetic energy equation using the two lever geometry definitions. Thus, the 
kinetic energy may be written in terms of angles α and β and their derivatives as 
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It is convenient to write the kinetic energy in the form 
 

 ( )2 2 2 cosT α αβ β α αβ β= + + + +& & && & & &W X Y Z  (5) 
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The potential energy for the two lever swing model is the same as the potential energy for a 
simple double pendulum whose plane is tilted at approximately η = 57o with the vertical to 
represent the swing plane. Thus, 

 
( ) ( )

( )
1 cos 1 cos

1 cos sin

A A C A

C C

V m gd m gL
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α α

β η

= − + −
+ − 

 (7) 

 
where g is the acceleration due to gravity. 
 
It has been shown that the force on the club due to gravity does not greatly influence the swing 
[3]. Thus, the potential energy terms are neglected in the modeling of this paper.  Hereafter, the 
Lagrangian function L is replaced the the kinetic energy T for deriving the equations of motion. 
 
Differentiation of the kinetic energy (Eq. 5) as prescribed by Lagrange's equation (Eq. 2) leads to 
the following equations of motion: 
 

 ( )2 2 cos Qαα β α β β+ + + =&& &&&& &&W X Z  (8) 

 ( )22 cos sin Qβα β α β α αβ β+ + + + =&& &&& && & &X Y Z Z  (9) 
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A final generalized force required to implement the golfer's wrist roll may be written in terms of 
angle γ measuring the location of the club face.  The equation of motion for this angle is 
 

 ( )2
Cr h hI m d Qγγ+ =&&  (10) 

 

where CrI  is the moment of inertia of the shaft about its long axis, mh is the mass of the club 
head and dh is the distance of the club head's center of mass to the club shaft axis. 
 
Generalized forces Qα, Qβ, and Qγ will be the applied moments used to drive the LS-DYNA 
robot model. 
 
KINEMATIC DRIVEN SWING 
 
A simple way to swing the golf club is to prescribe the angles α and β as a function of time.  In 
general, the club is at rest at the top of the swing and accelerates in the downswing until reaching 
a maximum at the ball.  Taking this acceleration to be gradual is a good assumption for a proper 
golf swing.  Thus, a good starting point for modeling the downswing a sinusoidal function. 
 
Let the total time of the downswing be designated by ta.  A second time critical for the swing of 
the golf club is the time at which the wrists unhinge, tr.  In time ta the golfer's arm goes from the 
top-of-the-swing position to the impact position. This angle will depend on the degree the golfer 
takes the club back.  For a swing having the club parallel to the ground at the top of the swing the 
angle α will go through π/2 radians.  (This is based on a wrist cock angle of βo = π/2 which is 
subsequently defined.) Any amount the club is short of parallel is defined as αo. The above can 
be accomplished by assuming the following definition for α 
 

 ( ) sin
2

a
o

a

t
t A t t

t

π πα α
π

 
= − + − 

 
 (11) 

 
with t = 0 representing the top of the swing and t = ta representing impact.  Observe that α(0) = 
αo - π/2 and α(ta) = 0 as desired if 
 

 
2

o

a a

A
t t

απ= −  (12) 

 
To model the kinematics of the wrist unhinging, define time duration tb as the time period 
between unhinging and impact with the ball 
 
 b a rt t t= −  (13) 

Before the wrists unhinge the angle β is fixed and simply defined as 
 

 
2o rt t
πβ β= = − ∀ <  (14) 
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It should be noted that a range of angles can be taken as the wrist cock angle, βo, rather than just 
π/2. As the wrists unhinge the angle β is written as 
 

 ( )' ' sin 'b
o

b

t
t B t t

t

πβ β
π

 
= − − 

 
 (15) 

 
t' = t - tr and B = βo/tb. 
 
Note that both A and B have units of rad/s, that is, angular velocity units.  Differentiation of α 
and β results in impact angular velocities of 2A and 2B for α&  and β& , respectively. 
 
The wrist roll also occurs after the wrist release.  Thus, 
 

 ( )' ' sin '
2

b

b

t
t C t t

t

π πγ
π

 
= − − 

 
 (16) 

 
where t' = t - tr and C = π/2tb. 
 
Using Eqs. 11, 15, and 16 in Eqs. 8 - 10 gives a way to compute moments Qα, Qβ, and Qγ. 
 
LS-DYNA MODEL OF THE TWO-LEVER SWING 
 
The model of the two-lever golf swing was based on a hitting robot used in club testing.  In this 
machine, the arm portion of the model was taken as a 25.4 mm thick rigid block of solid 
elements which is 482.6 mm long by 101.6 mm wide.  This part rotates about the middle of one 
end that is the center of rotation for the two-lever swing. Nodes on top and bottom of the plate 
are pinned using CONSTRAINED_NODE allowing for fixed-axis rotation. The arm is driven by 
an applied moment, Qα, to the arm using the LOAD_RIGID_BODY command. 
 
At the end of the arm opposite to the rotation center is a rigid block of solid elements used to 
implement the wrist release of the golf swing. This block is a 50.8 mm cube whose dimension 
was taken to approximate the corresponding part of an Iron Byron robot.  The wrist release block 
is attached to the arm using a constrained revolute joint. Since the wrist release has to maintain β 
= βo during the initial part of the downswing a contact constraint was used. Segments were 
defined on both the arm and wrist release block and tied together. This contact definition is given 
a death time corresponding to the wrist release time tr. The wrist roll, like the arm, was driven by 
an applied moment, Qβ, to the rigid body (LOAD_RIGID_BODY). 
 
The final piece of the robot is the collet that holds the golf club.  This part was modeled using 
rigid shell elements in a cylindrical shape.  The collet attaches to the wrist release block using a 
constrained revolute joint.  In addition to attaching the club to the robot, the collet provides the 
wrist roll that squares the club face to the ball (hence, the revolute joint).  To keep the club from 
twisting during the downswing, a segment contact was defined tying the wrist roll until tr. 
Squaring the club face after the wrist release is accomplished by applying a moment, Qγ via a 
LOAD_RIGID_BODY. For the wrist roll a follower moment was used. 
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A club is placed in the robot by constraining one or more shaft nodes to the collet 
(CONSTRAINED_EXTRA_NODES).  When finding the moment of inertia, mass center 
location, and mass for the above analysis, the inertia properties of the collet must be added to 
those of the club.  Figure 2 shows the overall model (with the exception of the ball) while Figure 
3 shows a detail of the arm-wrist-collet portion including revolute joints and tied contact 
definitions. 
 

 
Figure 2  Overall golf robot model 
 
In the above model, moments Qα, Qβ, and Qγ are input using load curves.  These curves can be 
generated using Eqs. 8, 9, and 10.  The inertia properties of the robot and the club was 
determined from running the model for a short period and then examining the D3HSP file.  It is 
noted that the inertia properties of the club as defined above needs to the wrist roll, the inertia 
term consists of the collet, shaft, and club head. 
 
It should be noted that moments Qβ  and Qγ generated from Lagrange's equations are nonzero 
prior to the wrist release.  Since there are contact definitions active in this time period, the load 
curves are taken as zero before the wrist release.  Immediately after the wrist release the load 
curve is taken to be value computed by Lagrange's equation. 
 
Figure 3 shows input parameters for a swing along with the form of the arm and wrist moments.  
Using the load curves generated for Qα, Qβ, and Qγ a LS-DYNA simulation shows the 
effectiveness of model. 
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CONCLUSION   
 
The equations of motion for a double pendulum were derived to model a golf robot swing.  
Generalized moments from the resulting equations were computed and used to drive an LS-
DYNA model of the robot.  This provides an effective way to generate many different swing 
profiles for swinging the virtual golf robot. 
 

 
 
 
Figure 3  Detail of revolute joints and tied contact definitions 
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Figure 4 Panel used to imput parameters and generate moment curves 
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