
7th International LS-DYNA Users Conference Material Technology (2) 

 16-51 

ON THE APPLICATION OF LS-OPT TO IDENTIFY  
NON-LINEAR MATERIAL MODELS IN LS-DYNA 

 
David J. Benson1, Nielen Stander2, Morten R. Jensen2 and Kenneth J. Craig3 

 
1 Department of Applied Mechanics and Engineering Sciences  

University of California, San Diego  
9500 Gilman Drive  

La Jolla, CA 92093-0411, USA 
dbenson@ucsd.edu 

2 Livermore Software Technology Corporation, 7374 Las Positas Rd, Livermore, CA 94550, 
USA 

nielen@lstc.com, jensen@lstc,com 
3 Multidisciplinary Design Optimization Group (MDOG), Department of Mechanical and 

Aeronautical Engineering, University of Pretoria, Pretoria 0002, South Africa 
ken.craig@eng.up.ac.za 

 
 

Abstract 
A response surface optimization algorithm for structural material or parameter identification is 
evaluated. The algorithm used is the Successive Response Surface Method (SRSM) available in 
LS-OPT. To illustrate the robustness of SRSM as a material identification tool, two test cases are 
presented. The first concerns the identification of the power-law material parameters of a simple 
tensile test specimen. The second test case involves the identification of a model to characterize 
the brittle damage in a composite laminated structure. It is shown that SRSM is an effective tool 
for material parameter identification involving strongly nonlinear materials. 
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Introduction 
The material identification process is a non-linear optimization process that uses experimentally 
measured data to determine the parameters describing a constitutive simulation model of a 
material. A non-linear simulation is performed with the model parameters as input, and the 
deviation of the simulated performance from that measured, also called a distance function, is 
used as a criterion for minimization (Eschenauer et al, 1990).  

Parameter and system identification or estimation have been applied in a variety of fields. More 
specifically, material identification has been used by various researchers to characterized 
materials used in structural analysis. Different optimization methods have been applied to 
minimize the resulting non-linear distance function. E.g., Reese (2001) uses a genetic algorithm 
to minimize the residual in the ‘Parameter Estimation via Genetic Algorithm’ (PEGA) approach, 
while Seibert et al. (2000) use a modified random search algorithm in the identification of 
viscoplastic constitutive models. Extended Kalman filters also find application, as in e.g. Li and 
Roberts (1999a, 1999b). Rikards et al. (1998, 1999, 2001) employ experimental design 
techniques as in the current study to identify the plastic properties of polymers (using micro-
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hardness test data) and the elastic properties of laminated composites (using vibration test data). 
Kok et al. (2000a) have applied the BFGS method with design sensitivity analysis (DSA) 
gradients to identify the parameters of a temperature and rate-dependent viscoplastic polycrystal 
model. In a more recent paper, Müllerschön et al (2001) applied the response surface method to 
the optimization of material parameters for rate dependent foam materials. LS-OPT was also 
used in that study. 
 
This process is shown schematically in Figure 1. The material constitutive relationship on the left 
typically involves different quantities than the experimental results curve on the right. The 
material constitutive law is a point-wise relationship valid at all points in the structural 
continuum whereas experimental results are discrete values of response quantities, typically as a 
function of time or deformation. The arrow represents both a simulation (forward) and 
optimization (backward) process to be performed to match the two curve sets. Multiple load 
configurations or geometries, involving the same material, can be introduced resulting in 
multiple cases being defined for the same optimization run. 
 

 

Experimental results Constitutive law 

Simulation 

Optimization 

  
Figure 1 – Material identification process 

 
Depending on the application for which the material identification is required, the formulation to 
be used in the optimization is adjusted accordingly. The two best known approaches are (i) the 
minimization of the maximum residual and (ii) the minimization of a residual norm constructed 
from the least squares residual (LSR) or RMS error: 
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where R represents the number of responses constituting the residual, and Γj is the scaling factor 
required for normalization or weighting of each respective response. In the current study, the 
residual is constructed as a composite, using a response surface for each fj(x). For the least-
squares residual approach an unconstrained minimization problem (Equation 1) is solved unless 
other constraints related to e.g. monotonicity (see, e.g. Stander et al, 2000 where optimization 
was used for airbag system identification) in the curves to be matched, etc. are prescribed. The 
standard targeted composite in LS-OPT is used (LSTC, 1999). 
 



7th International LS-DYNA Users Conference Material Technology (2) 

 16-53 

The Successive Response Surface Method (SRSM) as implemented in LS-OPT (LSTC (1999)) is 
used to solve the minimization problem. This optimization algorithm uses a Response Surface 
Methodology (RSM) (Myers and Montgomery(1995)), i.e. a Design of Experiments approach, to 
construct linear surfaces to fit the computed responses. More detail of the algorithm can be 
obtained in e.g. Stander and Craig (2001). The algorithm has been proven to be robust for 
simulation-based optimization studies in the crashworthiness and other structural optimization 
fields (Roux et al. (1998), Stander and Craig(2001), Stander et al. (2000), Kok and 
Stander(1999), Akkerman et al. (2000)). 
 
Two examples are introduced to demonstrate the procedure. 
 
Formulation of optimization problems 
The first example involves the identification of parameters in a power-law material model of a 
simple tensile test specimen and the second identification determines several parameters in a 
non-linear material law for brittle damage of a laminated composite. 

 
Power law using tensile test (Müller (2000); Stander et al (2002)) 
In this example, the parameters of a power-law material model of a tensile test specimen are 
determined using the experimental reaction force, F and elongation, u. The stress-strain history 
of the specimen (Figure 2) is simulated using LS-DYNA (LSTC, 2001) and the objective is 
defined as the least-squares difference between the simulated and measured force-elongation 
history.  
 

 

F,u 

 
Figure 2 – Quarter symmetric model of tensile test specimen 

 
The stress-strain relationship using the power-law material model, is defined in Equation 2: 
  
                           np

yp
n

y KK )( εεεσ +==                                                        (2) 

where ypε  is the elastic strain to yield and pε  is the effective plastic strain (logarithmic). The 

strength coefficient, K, and strain-hardening exponent, n, are used as design variables. 
Brittle damage law (LS-DYNA) using composite laminated beams 
The composite beams (see e.g. Figure 3) is modeled after actual experimental samples (Harach, 
2000). Each beam is a metal-intermetallic laminate (MIL) composite consisting of alternate 
layers of Titanium (Ti) and Titanium Tri-Aluminide (Al3Ti). It is simply supported with a 25mm 
span and centrally loaded perpendicular to the laminae. The cross-sectional measurements are 
typically 7mm deep and 3mm wide. When subjected to a 1 mm central displacement, the beam 
exhibits brittle failure of the Al3Ti layers as well as ductile failure of the Ti layers (Harach, 
2000). The experimental result available is the midspan force as a function of the midspan 
displacement. The beam shown in Figure 3 and 4, denoted as 14Ti-MIL, has a 14% volume 
fraction of titanium (filled in black).  
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Figure 3 – 14Ti MIL simply supported composite beam: deformed state (2mm maximum 
displacement) and cross-section. 

 

 
 

 
Figure 4 – 14Ti MIL simply supported composite beam: Deformed state (2mm displacement) 

showing failure and erosion of Ti layers. 
 
The results of two other composite beams were also incorporated into the optimization namely 
20Ti-MIL (20% Ti volume fraction) and 35Ti-MIL (35% Ti volume fraction). The material of 
interest is the Tri-Aluminide, hence the material parameters for the Ti are kept constant for the 
purpose of design optimization. 
 
The titanium is modeled with a kinematic hardening plasticity model with Young’s modulus, 
E=116GPa, Poisson’s ratio, ν=0.3, Yield stress Y = 450MPa, Tangent modulus = 6GPa and 
Failure strain = 8%. The titanium layers are alternated with Al3Ti layers. The Al3Ti is a brittle 
material, not unlike concrete, with a relatively low tensile strength. Two material models were 
investigated: 
 

1. A user-defined model (Benson (2002)) 
2. A brittle damage model available in LS-DYNA (Material 96) (Govindjee et al (1995)) 

 
The user-defined model consists of a piece-wise linear curve relating v. Mises stress to Effective 
strain (see Figure 5). The curve parameters are 

 
1. Young’s modulus. 

Erosion of Ti elements 
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2. The plastic strain increment between consecutive points on the curve (see Figure 5: a 
single parameter represents a uniform strain increment for all points on the curve). 

3. The flow stress curve data (solid points in Figure 5). 
4. A scale factor on the flow stress curve data when in compression.  

 
The points defining the flow stress curve can be specified individually, but for the purpose of the 
optimization, a fixed shape was chosen and scaled using a single variable for all the stress 
ordinates. The Young’s modulus is set at a fixed value of 215GPa.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – Laminate: User-defined material model 
The model was analyzed using an implicit quasi-static analysis. The optimization method used 
the RMS residual force quantity as the objective function with 33 target points on the 
experimental force-displacement curve. Three design variables were chosen in the optimization, 
namely (1) strain increment, (2) scale factor on the curve and (3) scale factor on the curve in 
compression. 
 
The second model investigated, a brittle damage model, admits progressive degradation of 
tensile and shear strengths across smeared cracks that are initiated under tensile loadings. 
Compressive failure is governed by a simplistic J2 flow correction. This model is explained in 
more detail in Govindjee (1995). Some detail is available in LSTC (2001). 
 
Results and discussion 
 
Tensile test material identification problem 
The starting design and optimum design values of the tensile test specimen material 
identification problem are shown in Table 1 together with the bounds on the design variables. 
 
 Minimum Initial Maximum Optimum 
K [GPa] 0.7 1 2 1.23865 
n [-] 0.01 0.1 0.2 0.106726 

 
Table 1 - Design variable upper and lower bounds; initial and optimum values of design 

variables – Tensile test specimen material identification 
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The optimization history for the design variables is given in Figures 6 and 7 as a function of the 
initial range on K. It can be seen that although the algorithm is sensitive to this parameter, the 
optimum is obtained in about 6 design iterations. The stable convergence rate of SRSM can also 
be viewed in the objective function (least-squares error) history plot in Figure 8. 
 

 
 

Figure 6 - Tensile test specimen material identification  - Optimization history of K as a function 
of initial range on K (Range on n = 0.05)  

 
Figure 7 - Tensile test specimen material identification  - Optimization history of n as a function 

of initial range on K (Range on n = 0.05) 
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Figure 8 - Optimization history of residual – Tensile test specimen material identification 

 
 
Composite laminated beam 
 
User-defined material model: 
The optimization histories of the three individual beams 14Ti, 20Ti and 35Ti are shown in Figure 
9. Most of the gain towards a calibrated material was made in the first few iterations and depends 
somewhat on the initial step size (e.g. note the small step used for Figure 9b). In Figure 9d all 
three beams with perpendicular loading were incorporated in the same run as a multi-case 
optimization. Note that, in this multi-case optimization, the residual did not decline very much 
beyond the first iteration. It is likely that, due to either experimental error or deficiencies in the 
material model, a more suitable material cannot be found. 
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Figure 9 - Optimization history – MIL composite beams:  
(a) 14Ti-MIL, (b) 20Ti-MIL, (c) 35Ti-MIL and (d) All beams (multi-case). 

The force units are in Newton 
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Figure 10 – Baseline and optimal force-displacement curves vs. experimental results:  
14Ti-MIL composite beam 
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Figure 11 – Baseline and optimal force-displacement curves vs. experimental results:  
20Ti-MIL composite beam 
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Figure 12 – Baseline and optimal force-displacement curves vs. experimental results:  
35Ti-MIL composite beam 

 
Figures 10, 11 and 12 show the force result comparisons for the 14Ti, 20Ti and 35Ti MIL beams 
respectively. The ‘Optimum’ shown in each case is for a single beam optimization whereas the 
‘3-Case’ curve represents the optimum of the multi-case optimization involving the three beams. 
The figures, as well as Table 2, confirm that the 3-Case optimization failed to obtain the same 
material quantities (Table 2). Hence, although experimental error may be playing a role, a new 
model, the brittle damage model was also investigated. 
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Table 2: Optimal parameters for 14Ti, 20Ti and 35Ti MIL composite beams 

 
Brittle damage model (LS-DYNA): 
An analysis was done with the 14Ti-MIL beam using the parameters in Table 3 to obtain the 
force-displacement result of Figure 13. These material parameters were based on a preliminary 
optimization that involved a calibration of the effective stress-strain curve obtained using the 
user-defined model. The force-displacement result shown in Figure 13 seems to indicate a 
promising, perhaps more accurate material model. However, the results of a multi-case 
optimization involving the 14Ti, 20Ti and 35Ti beam models are required to validate the model 
and will be presented at the conference. 
 

Parameter Description Parameter value 
Young’s modulus 215GPa 
Tensile Limit 220MPa 
Shear Limit 550MPa 
Fracture Toughness 36.3N/mm 
Shear retention .0165 
Viscosity 0.5MPa-sec 
Compressive Yield Stress 607MPa 

 
Table 3: Values of material parameters: brittle damage model 
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Figure 13 – Force Displacement Curve: 14Ti-MIL composite beam (brittle damage model in LS-
DYNA) 

 Plastic strain 
increment 

Scale factor 
In compression 

Scale factor 
On stress curve 

14Ti .00412 .629 .636 
20Ti .0091 1.046 1.488 
35Ti .0168 1.817 2.55 
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Conclusions 
The ability of the SRSM algorithm as employed in LS-OPT to perform material identification 
has been clearly illustrated in this paper. The following specific conclusions can be drawn: 
 

1. The SRSM algorithm in LS-OPT is able to identify material properties of non-linear 
materials with a variety of material laws. 

2. The identification process essentially converges in less than six optimization iterations in 
all cases considered. The method is not highly sensitive to the step-size applied in the 
optimization, except that a too small step may delay convergence to a limited extent as 
illustrated in the beam example. 

3. The choice of material model and variables used in the optimization as well as 
experimental accuracy remain crucially important factors in material identification. 
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