
7th International LS-DYNA Users Conference Metal Forming Technology

 15-23

USE OF MPP-DYNA FOR SIMULATING SHEET
METAL FORMING PROCESSES

Galbraith, P. Christopher
Metal Forming Analysis Corporation

Medusa Computing Corporation

Thomas, Dylan N.
Centre for Automotive Materials and Manufacturing

Medusa Computing Corporation

Chris Galbraith
Metal Forming Analysis Corporation

2579 Highway #2 East
Kingston, ON K7L 4V1

Canada
Tel: 613-547-5395

Email: galb@mfac.com

Abbreviations:
ASCII - American Standard Code for Information Interchange
CAD – Computer Aided Design
CPU – Central Processing Unit
FMVSS – Federal Motor Vehicle Safety Standard
LAM/MPI – Local Area Multicomputer/ Message Passing Interface
MCC – Medusa Computing Corporation
MPI – Message Passing Interface
MPP – Massively Parallel Processing
RCB – Recursive Coordinate Bisection
SMP – Shared Memory Parallel

Keywords:
Clusters, Linux, LS-DYNA, MPP, Sheet metal forming, SMP

Metal Forming Technology 7th International LS-DYNA Users Conference

15-24

ABSTRACT

Sheet forming simulations have been shown to have a profound impact on the tool and die industry, but accurate
solutions for large panels often require large amounts of CPU time. The development of MPP-DYNA has allowed a
large number of CPUs to be applied to a single problem thus reducing total elapsed time. This paper discusses the
use of MPP-DYNA for obtaining accurate solutions in small amounts of elapsed time using inexpensive PC-based
clusters of computers

INTRODUCTION

Finite element simulations of sheet forming operations have long been considered to be an effective means of
improving product quality and decreasing the cost and time to market of automobiles [5,6,12]. Until recently, these
methods have been employed only by the largest companies –auto manufactures and some of their Tier 1 suppliers.
Manpower requirements, initial costs of purchasing hardware and software, and a steep learning curve have
prevented smaller companies from embracing this technology.

Gradually, these impediments are being overcome. Specialty software such as DYNAFORM [2] and Hyperform [7]
have simplified the generation of an LS-DYNA sheet forming input deck. Instead of taking weeks to generate an
input deck, an analyst can go from CAD to LS-DYNA in a matter of hours. Analysts no longer require an advanced
degree to run the software, and the learning curve can be scaled much more quickly.

LS-DYNA software costs have remained constant for many years, and the cost of computers has been coming down
even though the performance continues to increase. As a result, many smaller sheet forming companies are adding
simulation capability. For some companies, this technology is viewed as a means to an end – being able to compete
for larger stampings and being recognized as a higher quality producer. The addition of simulation capability is
viewed as being strategically important to these companies.

It is important, therefore, that the predictions from the analyses are both accurate and timely. Accuracy comes from
doing the little things right, particularly describing the tooling geometry with sufficient numbers of elements so that
its shape is captured. A tool and die engineer would not tolerate a die radius that was composed of 3 flat sections.
Accordingly, an analyst should use sufficient numbers of elements along curved surfaces to give a smooth
representation.

The elements in the blank must be small enough so as to interact with small features in the tooling. As a result, for
large stampings, it may be necessary to have well over 100,000 elements in the blank. Large numbers of elements
results in small elements and hence small timesteps.

Accurate finite element solutions can result in long analysis times, which represents a problem for a tool and die
shop. If the analyst can’t come up with an acceptable tooling design in less time than the die designer does by trial
and error, he/she may soon be looking for a new job. Further, if the computer hardware required to run the analyses
in a timely fashion costs more than the savings available from the use of the analysis tools, it doesn’t make sense to
implement this technology.

LS-DYNA: SMP vs. MPP

LS-DYNA has its roots in the development of DYNA-3D at Lawrence Livermore National Laboratory in 1976.
Initially ported only to supercomputers, in the subsequent 26 years the code has been ported to seemingly slower
classes of computers – first to mainframes running operating systems such as VMS and UNIX, then to engineering
workstations, and finally to PCs.

The low cost of today’s PCs and their superior performance to the supercomputers of the 70’s and 80’s has brought
an immense computational power to the desk of anyone who wishes to use it. Nonetheless, an accurate forming
simulation of a large automotive panel is still a time consuming event. In this paper, we discuss how the Massively-
Parallel Processing (MPP) version of LS-DYNA can be used in conjunction with low-cost PC-based Linux clusters
to reduce the elapsed time to an acceptable level at a reasonable cost.

7th International LS-DYNA Users Conference Metal Forming Technology

 15-25

LS-DYNA is available in Shared Memory Parallel (SMP) and Massively Parallel Processing (MPP) versions. The
SMP version of the code will run an analysis on a single computer with 1 or more CPUs. At each stage of the
analysis, the governing equations are solved in parallel. Each processor can write/retrieve information to/from a
centralized bank of memory (hence “shared memory parallel”). Communication between processors is done
internally within the machine across the data bus. This is an extremely fast means of communication, but if enough
CPUs are active the bus can overload, creating a bottleneck.

The MPP version will run on one or more computers each with one or more CPUs. Each CPU has its own dedicated
local memory, and is assigned a portion of the analysis (Figure 1) by a process called domain decomposition. The
domain decomposition allows each processor to solve its piece of the puzzle independently of the other processors.

The CPUs are (possibly) scattered across different computers and connected by means of a network. The typical
Ethernet network is not as fast as the data bus in a single SMP computer, but it might not saturate as quickly as extra
CPUs are added. This is another reason why MPP-DYNA scales more readily than SMP-DYNA.

Over 90% of the features of SMP-DYNA are available in MPP-DYNA [9,10] and the input decks for MPP and SMP
runs are essentially identical. However, the SMP code had to be completely rewritten when the MPP version was
created. As a result, there are some important differences in how the two codes behave.

Perhaps the most important difference has to do with how contact is enforced. In the MPP code, each contact
algorithm is supported by a new parallel contact algorithm that handles initial penetrations differently. An MPP
specific option has been added which allows the initial penetrations to be dealt with without requiring them to be
moved and without generating large contact forces. Details can be found in reference [10]. Our experience has
shown that even with the use of these features, initial penetrations can lead to serious problems with the MPP code,
particularly with seat belt elements, and that initial penetrations should be avoided whenever practical.

Another difference for the user has to do with how output files are post-processed. The ASCII databases produced
by SMP versions of LS-DYNA are now combined into a series of binary files named dbout.* where the asterix is a
series of numbers increasing from 0000. After running the analysis, steps can be taken to extract the ASCII files
from this series of files. Details can be found in [10].

Finally, the execution environment for SMP and MPP versions of LS-DYNA is quite different. For SMP versions,
the user either has a graphical user interface on the PC for submitting jobs, or issues a single command line for the
Linux and Unix versions. For MPP runs, the execution environment is somewhat more complicated. It is possible
to run MPP-DYNA on single SMP machines, clusters of SMP machines, and clusters of single-CPU machines. In
each case, software must be run that permits MPP-DYNA to access the multiple CPUs as if they belonged to a
single computer. The steps for doing so are different for each hardware platform and cannot be covered in detail in
this document. Generally, though, the user must use software libraries that create a single virtual computer from
computers distributed across a network. These libraries are available from several sources, but the two that can be
used with LS-DYNA are LAM/MPI [8] and MPICH [11].Once the virtual computer has been created, software that
executes LS-DYNA on this virtual computer can be invoked. On the benchmark systems used in this paper, the
command would look something like:

mpirun –np 8 –O mpp-dyna i=input.dyn p=pfile

In the above, the “mpirun” is the command that indicates the mpp-dyna code is to be run on a cluster of computers.
“-np 8” indicates that 8 processors are to be used. “-O” indicates that the processors to be used are all of a kind
(homogeneous), and that the software shouldn’t waste time converting data to and from a LAM representation as it
is passed between machines. mpp-dyna should be replaced by the name of the mpp-dyna executable, and input.dyn
should be replaced by the name of the user’s dyna input file.

Finally, the p=pfile portion of the command provides the name of a parameter file (in this case “pfile”) that assists
MPP-DYNA in how it allocates pieces of the model to the different CPUs. The use of the pfile can have a profound
impact on the clock time taken to run the analysis. Details on the use of the parameter file can be found in Appendix
L of the LS-DYNA Keyword User’s Manual [10].

Metal Forming Technology 7th International LS-DYNA Users Conference

15-26

SCALABILITY

Scalability is a measure of how well a computer performs as the numbers of CPUs applied to an analysis increases.
For example, a computer would scale perfectly (100%) on 10 CPUs if a job run on 10 CPUs completed in 10% of
the time taken to run on a single CPU. If it took 20% of the time, then the scalability would be only 50%.

NprocessorsNeforelapsedtim

processoreforelapsedtim
yscalabilit

1001
% ×≅

For finite element simulations, perfect scalability does not exist due to the overhead required to perform domain
decomposition and the communication requirements. Each processor then computes the nodal deformations and
element values for its own subdomain. Elements that lie on the boundaries between subdomains require input from
other subdomains. This information is stored in memory on different computers, and requires communication across
the internal bus (for runs on SMP machines) or across the network (for local area machines).

As shown in Figure 1, this process is handled differently by the SMP and MPP versions of LS-DYNA. For SMP,
equations are generated for the whole of the structure. These equations are then solved in parallel by distributing
them across the CPUs. Equations are formulated, distributed and solved at 4 different stages during each timestep.

In the MPP version, each processor is responsible for solving its subdomain. It only needs to communicate with
other processors at two points during each timestep – when the contact forces are being calculated, and when the
nodal displacements are being updated. Information about nodes and elements on the interior of the subdomain is
all held within local memory. It may be necessary to communicate with other processors to handle contact along the
boundaries, and to update the nodes at the end of the timestep, but other than this there is little need for
communication.

Figure 1. LS-DYNA parallelization strategies. Top: SMP-DYNA. Equations are formulated at each of four stages
of the calculation of a timestep. These equations are then solved by a bank of processors. At each stage the code
must wait for each processor to finish before going to the next step. Bottom: MPP-DYNA. The model space is

7th International LS-DYNA Users Conference Metal Forming Technology

 15-27

11

5

6
3

2 3

3

2

2

2

divided into subdomains and each processor calculates values for its own subdomain. A limited amount of
information is passed between processors at only two times during each timestep.

The computational efficiency will go up if the ratio of boundary elements to internal elements is reduced because
this should reduce the amount of time spent waiting for information from other processors. Similarly, it is ideal to
have each processor solving an equal portion of the analysis (in terms of CPU cost). The processors can only solve
one timestep before waiting for all the other processors to complete their work.

The domain decomposition can play a vital role in assuring a balanced work load for each processor. If each
element in the model required the same amount of CPU time to process, then the ideal domain decomposition would
be one in which each CPU processed the same number of elements. However, different elements require differing
amounts of CPU time.
Contact further complicates things, because it requires CPU time and is highly non-linear – objects move in and out
of contact with other objects during the analysis.

During domain decomposition, the model geometry is sliced into pieces using a Recursive Coordinate Bisection
(RCB) and assigned to certain processors (Figure 2). If an even number of processors is used, the model is split into
2 equal domains. The split plane cuts the largest model dimension (x, y, or z) at a location that roughly balances the
number of elements in each half. Half of the processors are then allocated to each domain. If an uneven number of
CPUs is to be used, the model is split into 2 unequal domains in proportion to the nearest integers to half the number
of CPUs. The remaining portions would be split along their largest dimensions and a portion allocated to each
processor until each domain has roughly the same number of elements and one processor assigned to provide a
solution.

a) b) c) d) e)

Figure 2. Recursive Coordinate Bisection. The numbers in the boxes indicate the number of CPUs assigned for
solving each subdomain (if greater than 1). a) The largest dimension before splitting is the y-direction, so the first
cut is made perpendicular to the y-axis. b) If 11 processors are assigned to this analysis, the first cut is made at the
5/11ths mark (i.e. 5/11ths of the elements below the cut, 6/11ths of the elements above. c) the second cuts are made
at the 2/5ths marks for the lower domain and 3/6th mark for the upper domain. Note that the lower domain was split
perpendicular to x, the upper was split perpendicular to y. d) and e) the bisection continues until each domain has a
single CPU assigned to it.

Because the domain decomposition can have a profound impact on how quickly the model is solved, the user has
some control over how this calculation proceeds. For example, in sheet forming, it is ideal if each processor has an
equal portion of the model, both in terms of numbers of elements, and the amount of contact. This can often best be
done if the model is divided into columns oriented in the forming direction (Figure 3). To assure that the model is
not divided perpendicular to the forming direction, the forming direction can be scaled by a factor of 0.0 . This
calculation, applied only during the RCB, ensures that the forming direction (usually the z-direction) will never be
the largest in the model. Details on the structure of the pfile, which controls the coordinate bisection, can be found
in [10].

The goal of the recursive coordinate bisection is to equally balance the load between the processors. At the same
time, it would be ideal if the amount of network traffic was kept to a minimum.

This has an impact not only on how the user sets-up the problem (for recursive coordinate bisection) but also on how
systems should be designed for solving MPP-DYNA runs. To keep the network traffic down, you want to keep the
number of “boundary” nodes small compared to the number of “interior” nodes. In 3-dimensions, this is best done

Metal Forming Technology 7th International LS-DYNA Users Conference

15-28

by creating cube-sized domains. However, cube-sized domains can result in a single domain needing to
communicate with as many as 26 other domains. With standard Ethernet networks, communication with multiple
domains is done serially. If each domain had to talk to 26 other domains a great deal of time would be spent waiting
for information to flow before any calculations could be done.

Figure 3. Domain decomposition for sheet forming. a) Each CPU handles a column that runs through the model in
the direction of tooling travel. b) Top view showing 2-processor domain decomposition. c) 4 processors d) 8
processors.

It is probably better to keep the number of neighboring domains small, while still attempting to keep the number of
boundary nodes small. For example, in crash analyses, it is not uncommon to create domains that run from the front
of the car to the back of the car (Figure 1). Although each domain has a large number of boundary nodes as a result,
the number of neighbors is at most 2, and communication can occur in an orderly fashion.

SYSTEM DESIGN

If a large amount of data needs to be transmitted across the network, it is essential that the system be built with a
high-speed network. Low latency and high transmission rate networks can be created using advanced technologies
such as Myrinet and Gigabit Ethernet products, but these are costly. If the number of CPUs applied to the problem
is small, then the amount of time performing calculations will be large compared to the amount of time spent
waiting for information. In this case, it would be preferable to use cheap commodity technology such as Fast
Ethernet and spend any available hardware money on additional CPUs or faster CPUs.

If the network is proving to be the bottleneck because of inter-processor communication, then adding more CPUs
can actually increase the elapsed time and any additional money should be spent upgrading the network. As a first
pass, channel bonding is a relatively cheap solution that can provide vast improvements in throughput. In channel
bonding, each computer has multiple Fast Ethernet cards and network traffic can travel across different network
channels. Although the latency is not reduced, the throughput is increased because the pipeline for transmitting data
is increased in size.

In extreme cases, where each CPU is solving only a small number of elements, it may be necessary to use expensive
network technology to reduce model run times. Benchmark Case #1 below illustrates how networks can become the
limiting factor on scalability.

Regardless of which technology is used for building a local area network for cluster applications, it is essential that
network traffic is passed through a switch and not a hub. When a hub is used, traffic is handled serially. For
example, if computer 1 needs to talk to computer 2 and computer 3 needs to communicate with computer 4, a hub
would need to finish the connection between 1 and 2 before 3 and 4 could begin talking. With a switch, both data
streams could be handled simultaneously.

BENCHMARK RESULTS

Benchmark problems were run on a cluster of computers provided by Medusa Computing Corporation, a wholly
owned subsidiary of Metal Forming Analysis Corporation. The system details are shown in Table 1. Medusa
Computing Corporation (MCC) was created in order to provide access for LS-DYNA users to pre-configured
clusters of PCs, including specialty software to make running MPP-DYNA as easy to use as possible. The hardware
and Linux kernel are optimized to best run MPP-DYNA.

7th International LS-DYNA Users Conference Metal Forming Technology

 15-29

Elapsed Time

5.57
2.96

19.2

0

5

10

15

20

25

1 2

Number of CPUS

E
la

ps
ed

 T
im

e
(h

ou
rs

)

System 2

System 3

Benchmark problems came from MFAC customers interested in purchasing a cluster from MCC. The customer’s
originating hardware is identified and the run times on their hardware are listed. In each case, the originating
hardware was several years old and due to be replaced, so the timings here are not indicative of the timings that
would result from newer hardware.

Table 1. Computer systems for running benchmark problems. System #1 is 18 months old. System 2 uses state-of-
the-art components. Systems 3 through 6 are customer systems that are due to be replaced.

System
Number

1 2 3 4 5 6

System
Descriptor

MCC P-III
system

MCC P-4
system

Sun Sparc
Ultra 60

HP J-5000 SGI Origin
2000

Compaq
Alpha
Cluster

Max. # of
CPUs

8 8 2 2 18 5

RAM 4 GB 4GB ? ? 9GB 5GB
Clock Speed 800 MHz 2000 MHz 450 MHz ? 300 MHz 667 MHz
Network Fast

Ethernet
Channel
bonded Fast
Ethernet,
Gigabit

Internal Internal Internal Fast
Ethernet

LS-DYNA
version

MPP MPP SMP SMP MPP MPP

Case 1
This model was provided by an automotive seat supplier and consisted of the slide assembly that attaches the seat to
the floor and permits the seat to be positioned fore and aft. The model was a simulation of the testing required to
meet Federal Motor Vehicle Safety Standard 225 [3]. This rule establishes a new Federal motor vehicle safety
standard that requires motor vehicle manufacturers to provide motorists with a new way of installing child restraints.

There are many moving parts in the slider and extensive contact between parts. The part is small in size, but is
costly to solve due to the complex shape and high degree of contact. Accordingly, it is not a great candidate for an
MPP analysis because of the difficulties in performing a domain decomposition that balances the load fairly between
processors. It is extremely difficult to balance the needs for equal element computation time and equal contact
processing. The network communication is already a significant portion of the elapsed time because the model is
physically small and each processor can finish its calculations very quickly.

This model was run using SMP-DYNA on a single CPU of System 3 (from Table 1). The analysis took 19.2 hours
to complete. This model was also run on 1 and 2 CPUs of the MCC P-4 Linux cluster (system 2). The analysis
completed in 5.57 and 2.96 hours respectively. For additional CPUs the model didn’t scale well, and required
more elapsed time than the 2 CPU case.

Figure 4. Elapsed time for a small seat slide assembly model run on two different computer systems using MPP-
DYNA (system 2) and SMP-DYNA (system 3).

Metal Forming Technology 7th International LS-DYNA Users Conference

15-30

Elapsed Time

20.4
13.7

35.9

0

10

20

30

40

50

1 2

Number of CPUS

E
la

ps
ed

 T
im

e
(h

ou
rs

)

System 2

System 3

Case 2
This model was supplied by the same automotive seat supplier, and was a model of a full seat with a rigid dummy
and seatbelts. The run simulated the testing required to meet FMVSS 210 [4] which evaluates the strength of the
seat with the effects of a person restrained by seat belts, undergoing a frontal crash. This model had many initial
penetrations of the seat belt assembly that were handled well by the SMP version of the code. However, these initial
penetrations had to be removed before the MPP version could properly handle the analysis.

On the original Sun hardware (system 3, 2 CPUs), the analysis completed in 35.92 hours of elapsed time. On a
single CPU of the MCC P-4 cluster, the model completed in 20.4 hours. Adding a second CPU dropped the elapsed
time to 13.7 hours. This domain was also difficult to decompose adequately, because almost all of the contact
occurred in the slide assembly beneath the seat. Geometrically, most of the elements were above the seat. Adding
additional CPUs did not reduce the elapsed time significantly.

Figure 5. Elapsed time for a full seat assembly model, including seat belts and a rigid dummy.

Case 3
The third case studied was an automotive crash simulation of a mini-van (Figure 6). There were 376,703 elements
in the model, which was a public domain model of the vehicle. Using SMP-DYNA, the model took 68 hours to
complete on a single-CPU XP1000 (system 6). The MPP-DYNA run on system 6 took 55.5 hours using 2 CPUs
and the default domain decomposition (Figure 6b), and 25.5 hours using 4 CPUs (Figure 7).

The model was run on 8 CPUs of the MCC clusters – both the P-3 and P-4 based systems. The model ran in 29
hours on the P-3 system and in 15.15 hours on the P-4 system.

 a) b)

Figure 6. The mini-van model. The model contained over 376 thousand elements. a) the default decomposition
obtained by subdividing the longest dimension is unsuitable for good load balancing. All of the contact occurs in
the front domain. b) better results were obtained with the 4-CPU decomposition.

7th International LS-DYNA Users Conference Metal Forming Technology

 15-31

Elapsed Time

29
15.15

68.5
55.6

31.8 25.5

0

20

40

60

80

1 2 3 4 8

Number of CPUS

E
la

ps
ed

 T
im

e
(h

ou
rs

) System 1

System 2

System 6

Figure 7. Elapsed time for solving the mini-van impact problem.

Case 4
A medium-sized (90,234 element) sheet forming model was studied. The part in question was an aluminum
structural part (not shown) which was modeled without adaptivity. Originally, the model was run on an SGI Origin
2000 R12K system running at 300 MHz. The model was run on 1,2,4, and 8 processors and took 67.95, 33.62,
17.41 and 7.88 hours respectively to complete. Chu (2000) would suggest that the apparent super-scalability in
comparing the 8-processor timings to any of the other models is probably explained by the size of the computing
cache relative to the portion of the model being solved. As more processors are used, the amount of data handled by
each computer decreases until eventually the data will fit entirely into cache. At this point, the computing efficiency
jumps. It is also clear that the use of the MPP code on an SMP machine provides for excellent scalability at low
numbers of processors.

Proving that scalability isn’t everything, when the same model was run on the P-4 system it completed in 16.88
hours on a single CPU and 3.34 hours on 8 CPUs (Figure 8). Although the MCC cluster running across a local area
network did not scale nearly as well as the larger SMP machine, it provided an answer more quickly at a fraction of
the cost.

Elapsed Time

16.88
3.34

67.95

33.62
17.41

7.88

0

20

40

60

80

1 2 4 8

Number of CPUs

E
la

ps
ed

 T
im

e
(h

ou
rs

)

System 2

System 5

Figure 8. Elapsed time for running a medium-sized sheet forming problem on an SGI Origin 2000 and a Pentium-4
based Linux cluster. The SGI system (system 5) scales linearly, but the P-4 system (system 2) completes the
analysis more quickly.

Case 5
In this model, a large sheet forming operation was simulated. The panel was a hood inner, and required 205,800
elements to describe the tooling geometry. The blank initially required 4800 elements, with a mean element size of
20 mm. The model was run adaptively, so at the end of the analysis, the model was comprised of nearly 320,000
elements. The originating hardware was the same SGI system for benchmark #4. On 8 processors of the SGI, the
model ran in just over 61 hours. Using 8 CPUs of system 2, the model completed in 32.5 hours.

Metal Forming Technology 7th International LS-DYNA Users Conference

15-32

Case 6
Three successive stages of a hydroforming operation were simulated using LS-DYNA. During the first stage, the
tube was bent. In the second stage, the dies were closed. In the final stage, end feed and internal pressurization
caused the tube to expand inside the die cavity.

The models were initially run on an HP-J5000 system (system 4) with 2 CPUs running SMP-DYNA. Model times
quoted were for a single-CPU run only because the operating system HP-UX 10.2 did not support parallel execution.
For comparison purposes, the 800 MHz system (system 1) ran all three analyses on 1,2,4,6, and 8 processors. As
seen in Table 2, it took two of the Pentium-III CPUs to match the speed of the single HP J-5000. It should also be
noted that the cluster scaled almost perfectly for this application. Hydroforming, it turns out, is an ideal application
for scaling of these clusters.

The reasons for this excellent scalability has to do with the nature of hydroforming tubes. The longest dimension in
the model is along the length of the tube. If the domain decomposition proceeds as it should, then each subdomain
consists of a length of the tube and the associated nearby tooling. This means that:

1. each subdomain borders on at most 2 other subdomains, and
2. the boundary nodes are oriented along the tube diameter, which is small compared to the tube length.

The consequences of these facts are that network traffic is minimal, because communication is required for a
relatively small number of nodes and communication from one subdomain is with at most 2 other subdomains.

Table 2. Elapsed time (hours) to run 3 different hydroforming models. The HP models ran the SMP version of LS-
DYNA. The MPP version was run on the P-III cluster. It took 2 of the 800 MHz P-III CPUs to match the speed of
the HP J-5000 system. Note how well the cluster scales for hydroforming simulations. Based on previous
benchmarks, it is anticipated that the P-4 cluster would run in about 50% of the time of the P-II cluster.

Model
Description

HP J-5000
(System 4)

P-III system (system 1)

 1 CPU 1 CPU 2 CPUs 4 CPUs 6 CPUs 8 CPUs
Tube bending 4.02 7.99 3.96 2.08 1.47 1.17
Die closure 1.30 2.24 1.30 0.72 0.56 0.47
pressurization 2.38 4.01 2.04 1.11 0.801 0.63

DISCUSSION AND CONCLUSIONS

The use of multiple processors has been shown to be an effective method for reducing the elapsed time required for
finite element simulations. LSTC currently sells two versions of LS-DYNA capable of using multiple processors.
Of the two versions, the MPP version has been shown to scale better over a larger range of processors.

Using MPP-DYNA on a cluster of Linux-based computers can provide super-computing performance at workstation
prices. This technology, once found only in computer-science laboratories and at research facilities, is now
available for the industrial user. It remains a challenge, however, to set up and maintain such a cluster. Medusa
Computing Corporation was established in 2001 to provide this service to LS-DYNA customers.

From the results presented here, it is clear that over a limited number of CPUs, SMP machines scale much better
than clusters distributed over a Fast Ethernet network. Having said that, the raw speed of the PC architecture is such
that clusters of PC’s will often beat the more expensive UNIX architectures. While the benchmark results presented
here were comparisons between current generation PC’s and older generation Unix workstations, it seems clear that
for price/performance considerations it is hard to ignore the power of the clusters.

Scalability is a function not only of the computer hardware, but also of the problem being solved. Some problems
lend themselves to effective domain decomposition. Others prove more difficult. Crash analysis is a particularly
difficult problem to balance, because contact early in the analysis is very different from contact midway through.
Hence an optimal decomposition at the start of the analysis may be a faulty decomposition later.

A good domain decomposition is easier to obtain for sheet forming problems, because contact can be more easily
predicted. There are fewer contact interfaces, and the main problem is essentially a 2-dimensional one. The blank is

7th International LS-DYNA Users Conference Metal Forming Technology

 15-33

made of shell elements, so it is broken down into rectangles (at most 8 neighbors) and not cubes (with up to 26
neighbors).

The benefit of moving from 3-D in crash to 2-D in sheet forming is duplicated when moving to 1-D for
hydroforming. Granted, hydroforming is not a one dimensional problem, but the domain decomposition quickly
becomes a 1-D sort. The resulting problem scales so well because the number of neighboring domains is at most 2
and the ratio of boundary nodes to interior nodes is small. If enough processors are applied to the problem, the
hydroforming simulation will again become a 2-D decomposition, but the elapsed time is likely to be so small at that
time as to be insignificant.

With the ease-of-use of today’s pre-processors, the power displayed by clusters of PC’s, and their relatively low
price, even small tool and die shops can start to embrace sheet forming simulations.

REFERENCES

1. Chu, R. and Li, G. (2000) “Scalability of LS-DYNA on SGI Systems”. Proceedings of the 6th International
LS-DYNA User’s Conference. Dearborn, MI. (April 9-11) p. 17.35 – 17.39.

2.
3. DYNAFORM User’s Manual Version 3.0. December, 1998.

4. Federal Motor Vehicle Safety Standards. “Child Restraint Systems;

Child Restraint Anchorage Systems”. Department Of Transportation, National Highway Traffic Safety
Administration. 49 CFR Parts 571 and 596.

5. Federal Motor Vehicle Safety Standards. “Seat Belt Assembly Anchorages”. Department Of

Transportation, National Highway Traffic Safety Administration. 64 FR 29617; REG: 49 CFR Part
571.210.

6. Galbraith, P.C., Finn, M.J., and Bull, M.J. (1996) “Industrial sheet forming simulations: current capabilities

and future requirements”. High Performance Computing In Automotive Design, Engineering, and
Manufacturing. Proceedings of the 3rd International Conference on High Performance Computing in the
Automotive Industry. 539-556

7. Honecker, A. and Mattiasson, K. (1989) “Finite element procedures for 3D sheet forming simulation”.

Numiform89: Numerical Methods in Industrial Forming Processes. Thompson, E.G., Wood, R.D.,
Zienkiewicz, O.C. and Samuelsson, A. (eds.) A.A. Balkema. p. 457-463.

8. HyperForm 5.0 User's Guide, Altair Engineering., Troy, Michigan, 2001

9. LAM/MPI. http://www.lam-mpi.org

10. LS-DYNA User’s Manual Version 960, Volume I. (2001) Livermore Software Technology Corporation.

Livermore, CA.

11. LS-DYNA MPP User’s Guide. (2001) LS-DYNA User’s Manual Version 960, Volume II.. Appendix L.
Livermore Software Technology Corporation. Livermore, CA.

12. MPICH. http://www-unix.mcs.anl.gov/mpi/mpich

13. Wertheimer,T. (1991) Numerial simulation of metal sheet forming processes. FE-Simulation of 3-D Sheet

Metal Forming Processes in Automotive Industry. VDI Berichte 894 , 517-548.

Metal Forming Technology 7th International LS-DYNA Users Conference

15-34

