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ABSTRACT 
 
Sheet forming simulations have been shown to have a profound impact on the tool and die industry, but accurate 
solutions for large panels often require large amounts of CPU time.  The development of MPP-DYNA has allowed a 
large number of CPUs to be applied to a single problem thus reducing total elapsed time.  This paper discusses the 
use of MPP-DYNA for obtaining accurate solutions in small amounts of elapsed time using inexpensive PC-based 
clusters of computers 
 

INTRODUCTION 
 
Finite element simulations of sheet forming operations have long been considered to be an effective means of 
improving product quality and decreasing the cost and time to market of automobiles [5,6,12].  Until recently, these 
methods have been employed only by the largest companies –auto manufactures and some of their Tier 1 suppliers.  
Manpower requirements, initial costs of purchasing hardware and software, and a steep learning curve have 
prevented smaller companies from embracing this technology. 
 
Gradually, these impediments are being overcome.  Specialty software such as DYNAFORM [2] and Hyperform [7] 
have simplified the generation of an LS-DYNA sheet forming input deck.  Instead of taking weeks to generate an 
input deck, an analyst can go from CAD to LS-DYNA in a matter of hours.  Analysts no longer require an advanced 
degree to run the software, and the learning curve can be scaled much more quickly. 
 
LS-DYNA software costs have remained constant for many years, and the cost of computers has been coming down 
even though the performance continues to increase.  As a result, many smaller sheet forming companies are adding 
simulation capability.  For some companies, this technology is viewed as a means to an end – being able to compete 
for larger stampings and being recognized as a higher quality producer.  The addition of simulation capability is 
viewed as being strategically important to these companies. 
 
It is important, therefore, that the predictions from the analyses are both accurate and timely.  Accuracy comes from 
doing the little things right, particularly describing the tooling geometry with sufficient numbers of elements so that 
its shape is captured.  A tool and die engineer would not tolerate a die radius that was composed of 3 flat sections.  
Accordingly, an analyst should use sufficient numbers of elements along curved surfaces to give a smooth 
representation.   
 
The elements in the blank must be small enough so as to interact with small features in the tooling.  As a result, for 
large stampings, it may be necessary to have well over 100,000 elements in the blank.  Large numbers of elements 
results in small elements and hence small timesteps. 
 
Accurate finite element solutions can result in long analysis times, which represents a problem for a tool and die 
shop.  If the analyst can’t come up with an acceptable tooling design in less time than the die designer does by trial 
and error, he/she may soon be looking for a new job.  Further, if the computer hardware required to run the analyses 
in a timely fashion costs more than the savings available from the use of the analysis tools, it doesn’t make sense to 
implement this technology. 
 

LS-DYNA: SMP vs. MPP 
 
LS-DYNA has its roots in the development of DYNA-3D at Lawrence Livermore National Laboratory in 1976.  
Initially ported only to supercomputers, in the subsequent 26 years the code has been ported to seemingly slower 
classes of computers – first to mainframes running operating systems such as VMS and UNIX, then to engineering 
workstations, and finally to PCs.   
 
The low cost of today’s PCs and their superior performance to the supercomputers of the 70’s and 80’s has brought 
an immense computational power to the desk of anyone who wishes to use it.  Nonetheless, an accurate forming 
simulation of a large automotive panel is still a time consuming event.  In this paper, we discuss how the Massively-
Parallel Processing (MPP) version of LS-DYNA can be used in conjunction with low-cost PC-based Linux clusters 
to reduce the elapsed time to an acceptable level at a reasonable cost. 
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LS-DYNA is available in Shared Memory Parallel (SMP) and Massively Parallel Processing (MPP) versions.  The 
SMP version of the code will run an analysis on a single computer with 1 or more CPUs.  At each stage of the 
analysis, the governing equations are solved in parallel.  Each processor can write/retrieve information to/from a 
centralized bank of memory (hence “shared memory parallel”).  Communication between processors is done 
internally within the machine across the data bus.  This is an extremely fast means of communication, but if enough 
CPUs are active the bus can overload, creating a bottleneck.   
 
The MPP version will run on one or more computers each with one or more CPUs.  Each CPU has its own dedicated 
local memory, and is assigned a portion of the analysis (Figure 1) by a process called domain decomposition.  The 
domain decomposition allows each processor to solve its piece of the puzzle independently of the other processors. 
 
The CPUs are (possibly) scattered across different computers and connected by means of a network.  The typical 
Ethernet network is not as fast as the data bus in a single SMP computer, but it might not saturate as quickly as extra 
CPUs are added.  This is another reason why MPP-DYNA scales more readily than SMP-DYNA. 
 
Over 90% of the features of SMP-DYNA are available in MPP-DYNA [9,10] and the input decks for MPP and SMP 
runs are essentially identical.  However, the SMP code had to be completely rewritten when the MPP version was 
created.  As a result, there are some important differences in how the two codes behave. 
 
Perhaps the most important difference has to do with how contact is enforced.  In the MPP code, each contact 
algorithm is supported by a new parallel contact algorithm that handles initial penetrations differently.  An MPP 
specific option has been added which allows the initial penetrations to be dealt with without requiring them to be 
moved and without generating large contact forces.  Details can be found in reference [10].  Our experience has 
shown that even with the use of these features, initial penetrations can lead to serious problems with the MPP code, 
particularly with seat belt elements, and that initial penetrations should be avoided whenever practical. 
  
Another difference for the user has to do with how output files are post-processed.  The ASCII databases produced 
by SMP versions of LS-DYNA are now combined into a series of binary files named dbout.* where the asterix is a 
series of numbers increasing from 0000.  After running the analysis, steps can be taken to extract the ASCII files 
from this series of files.  Details can be found in [10]. 
 
Finally, the execution environment for SMP and MPP versions of LS-DYNA is quite different.  For SMP versions, 
the user either has a graphical user interface on the PC for submitting jobs, or issues a single command line for the 
Linux and Unix versions.  For MPP runs, the execution environment is somewhat more complicated.  It is possible 
to run MPP-DYNA on single SMP machines, clusters of SMP machines, and clusters of single-CPU machines.  In 
each case, software must be run that permits MPP-DYNA to access the multiple CPUs as if they belonged to a 
single computer.  The steps for doing so are different for each hardware platform and cannot be covered in detail in 
this document.  Generally, though, the user must use software libraries that create a single virtual computer from 
computers distributed across a network.  These libraries are available from several sources, but the two that can be 
used with LS-DYNA are LAM/MPI [8] and MPICH [11].Once the virtual computer has been created, software that 
executes LS-DYNA on this virtual computer can be invoked.  On the benchmark systems used in this paper, the 
command would look something like: 
 
mpirun –np 8 –O mpp-dyna i=input.dyn p=pfile 
 
In the above, the “mpirun” is the command that indicates the mpp-dyna code is to be run on a cluster of computers.  
“-np 8” indicates that 8 processors are to be used.  “-O” indicates that the processors to be used are all of a kind 
(homogeneous), and that the software shouldn’t waste time converting data to and from a LAM representation as it 
is passed between machines.  mpp-dyna should be replaced by the name of the mpp-dyna executable, and input.dyn 
should be replaced by the name of the user’s dyna input file. 
 
Finally, the p=pfile portion of the command provides the name of a parameter file (in this case “pfile”) that assists 
MPP-DYNA in how it allocates pieces of the model to the different CPUs.  The use of the pfile can have a profound 
impact on the clock time taken to run the analysis.  Details on the use of the parameter file can be found in Appendix 
L of the LS-DYNA Keyword User’s Manual [10]. 
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SCALABILITY 
 
Scalability is a measure of how well a computer performs as the numbers of CPUs applied to an analysis increases.  
For example, a computer would scale perfectly  (100%) on 10 CPUs if a job run on 10 CPUs completed in 10% of 
the time taken to run on a single CPU.   If it took 20% of the time, then the scalability would be only 50%.  
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For finite element simulations, perfect scalability does not exist due to the overhead required to perform domain 
decomposition and the communication requirements.  Each processor then computes the nodal deformations and 
element values for its own subdomain.  Elements that lie on the boundaries between subdomains require input from 
other subdomains.  This information is stored in memory on different computers, and requires communication across 
the internal bus (for runs on SMP machines) or across the network (for local area machines). 
 
As shown in Figure 1, this process is handled differently by the SMP and MPP versions of LS-DYNA.  For SMP, 
equations are generated for the whole of the structure.  These equations are then solved in parallel by distributing 
them across the CPUs.  Equations are formulated, distributed and solved at 4 different stages during each timestep.     
 
In the MPP version, each processor is responsible for solving its subdomain.  It only needs to communicate with 
other processors at two points during each timestep – when the contact forces are being calculated, and when the 
nodal displacements are being updated.  Information about nodes and elements on the interior of the subdomain is 
all held within local memory.  It may be necessary to communicate with other processors to handle contact along the 
boundaries, and to update the nodes at the end of the timestep, but other than this there is little need for 
communication. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  LS-DYNA parallelization strategies. Top:  SMP-DYNA.  Equations are formulated at each of four stages 
of the calculation of a timestep.  These equations are then solved by a bank of processors.  At each stage the code 
must wait for each processor to finish before going to the next step.  Bottom: MPP-DYNA.  The model space is 

 



7th International LS-DYNA Users Conference Metal Forming Technology 

 15-27 

11 

5 

6 
3 

2 3 

3 

2 

2 

2 

divided into subdomains and each processor calculates values for its own subdomain.  A limited amount of 
information is passed between processors at only two times during each timestep. 
 
The computational efficiency will go up if the ratio of boundary elements to internal elements is reduced because 
this should reduce the amount of time spent waiting for information from other processors.  Similarly, it is ideal to 
have each processor solving an equal portion of the analysis (in terms of CPU cost).  The processors can only solve 
one timestep before waiting for all the other processors to complete their work.   
 
The domain decomposition can play a vital role in assuring a balanced work load for each processor.  If each 
element in the model required the same amount of CPU time to process, then the ideal domain decomposition would 
be one in which each CPU processed the same number of elements.  However, different elements require differing 
amounts of CPU time. 
Contact further complicates things, because it requires CPU time and is highly non-linear – objects move in and out 
of contact with other objects during the analysis. 
 
During domain decomposition, the model geometry is sliced into pieces using a Recursive Coordinate Bisection 
(RCB) and assigned to certain processors (Figure 2).  If an even number of processors is used, the model is split into 
2 equal domains.  The split plane cuts the largest model dimension (x, y, or z) at a location that roughly balances the 
number of elements in each half.  Half of the processors are then allocated to each domain.  If an uneven number of 
CPUs is to be used, the model is split into 2 unequal domains in proportion to the nearest integers to half the number 
of CPUs.  The remaining portions would be split along their largest dimensions and a portion allocated to each 
processor until each domain has roughly the same number of elements and one processor assigned to provide a 
solution.  
 
a)  b)  c) d)  e) 

 
 
 
 
 

 
 
 
 
Figure 2.  Recursive Coordinate Bisection.   The numbers in the boxes indicate the number of CPUs assigned for 
solving each subdomain (if greater than 1). a) The largest dimension before splitting is the y-direction, so the first 
cut is made perpendicular to the y-axis.  b) If 11 processors are assigned to this analysis, the first cut is made at the 
5/11ths mark (i.e. 5/11ths of the elements below the cut, 6/11ths of the elements above. c) the second cuts are made 
at the 2/5ths marks for the lower domain and 3/6th mark for the upper domain.  Note that the lower domain was split 
perpendicular to x, the upper was split perpendicular to y. d) and e) the bisection continues until each domain has a 
single CPU assigned to it. 
 
Because the domain decomposition can have a profound impact on how quickly the model is solved, the user has 
some control over how this calculation proceeds.  For example, in sheet forming, it is ideal if each processor has an 
equal portion of the model, both in terms of numbers of elements, and the amount of contact.   This can often best be 
done if the model is divided into columns oriented in the forming direction (Figure 3).  To assure that the model is 
not divided perpendicular to the forming direction, the forming direction can be scaled by a factor of 0.0 .  This 
calculation, applied only during the RCB, ensures that the forming direction (usually the z-direction) will never be 
the largest in the model.  Details on the structure of the pfile, which controls the coordinate bisection, can be found 
in [10]. 
 
The goal of the recursive coordinate bisection is to equally balance the load between the processors.  At the same 
time, it would be ideal if the amount of network traffic was kept to a minimum.   
 
This has an impact not only on how the user sets-up the problem (for recursive coordinate bisection) but also on how 
systems should be designed for solving MPP-DYNA runs.  To keep the network traffic down, you want to keep the 
number of “boundary” nodes small compared to the number of “interior” nodes.  In 3-dimensions, this is best done 
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by creating cube-sized domains.  However, cube-sized domains can result in a single domain needing to 
communicate with as many as 26 other domains.  With standard Ethernet networks, communication with multiple 
domains is done serially.  If each domain had to talk to 26 other domains a great deal of time would be spent waiting 
for information to flow before any calculations could be done. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Domain decomposition for sheet forming.  a) Each CPU handles a column that runs through the model in 
the direction of tooling travel.  b) Top view showing 2-processor domain decomposition.  c) 4 processors  d) 8 
processors. 
 
It is probably better to keep the number of neighboring domains small, while still attempting to keep the number of 
boundary nodes small.  For example, in crash analyses, it is not uncommon to create domains that run from the front 
of the car to the back of the car (Figure 1).  Although each domain has a large number of boundary nodes as a result, 
the number of neighbors is at most 2, and communication can occur in an orderly fashion. 
 

SYSTEM DESIGN 
 
If a large amount of data needs to be transmitted across the network, it is essential that the system be built with a 
high-speed network.  Low latency and high transmission rate networks can be created using advanced technologies 
such as Myrinet and Gigabit Ethernet products, but these are costly.  If the number of CPUs applied to the problem 
is small, then the amount of time performing calculations will be large compared to the amount of time spent 
waiting for information.  In this case, it would be preferable to use cheap commodity technology such as Fast 
Ethernet and spend any available hardware money on additional CPUs or faster CPUs.   
 
If the network is proving to be the bottleneck because of inter-processor communication, then adding more CPUs 
can actually increase the elapsed time and any additional money should be spent upgrading the network.  As a first 
pass, channel bonding is a relatively cheap solution that can provide vast improvements in throughput.  In channel 
bonding, each computer has multiple Fast Ethernet cards and network traffic can travel across different network 
channels.  Although the latency is not reduced, the throughput is increased because the pipeline for transmitting data 
is increased in size.    
 
In extreme cases, where each CPU is solving only a small number of elements, it may be necessary to use expensive 
network technology to reduce model run times.  Benchmark Case #1 below illustrates how networks can become the 
limiting factor on scalability. 
 
Regardless of which technology is used for building a local area network for cluster applications, it is essential that 
network traffic is passed through a switch and not a hub.  When a hub is used, traffic is handled serially.  For 
example, if computer 1 needs to talk to computer 2 and computer 3 needs to communicate with computer 4, a hub 
would need to finish the connection between 1 and 2 before 3 and 4 could begin talking.  With a switch, both data 
streams could be handled simultaneously. 
 

BENCHMARK RESULTS 
 
Benchmark problems were run on a cluster of computers provided by Medusa Computing Corporation, a wholly 
owned subsidiary of Metal Forming Analysis Corporation.  The system details are shown in Table 1.  Medusa 
Computing Corporation (MCC) was created in order to provide access for LS-DYNA users to pre-configured 
clusters of PCs, including specialty software to make running MPP-DYNA as easy to use as possible.  The hardware 
and Linux kernel are optimized to best run MPP-DYNA. 
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Benchmark problems came from MFAC customers interested in purchasing a cluster from MCC.  The customer’s 
originating hardware is identified and the run times on their hardware are listed.  In each case, the originating 
hardware was several years old and due to be replaced, so the timings here are not indicative of the timings that 
would result from newer hardware.   
 
Table 1.  Computer systems for running benchmark problems.  System #1 is 18 months old.   System 2 uses state-of-
the-art components.  Systems 3 through 6 are customer systems that are due to be replaced. 

System 
Number 

1 2 3 4 5 6 

System 
Descriptor 

MCC P-III 
system 

MCC P-4 
system 

Sun Sparc 
Ultra 60 

HP J-5000 SGI Origin 
2000 

Compaq 
Alpha 
Cluster 

Max. # of 
CPUs 

8 8 2 2 18 5 

RAM 4 GB 4GB ? ? 9GB 5GB 
Clock Speed 800 MHz 2000 MHz 450 MHz ? 300 MHz 667 MHz 
Network Fast 

Ethernet 
Channel 
bonded Fast 
Ethernet, 
Gigabit 

Internal Internal Internal Fast 
Ethernet 

LS-DYNA 
version 

MPP MPP SMP SMP MPP MPP 

 
 
Case 1 
This model was provided by an automotive seat supplier and consisted of the slide assembly that attaches the seat to 
the floor and permits the seat to be positioned fore and aft.  The model was a simulation of the testing required to 
meet Federal Motor Vehicle Safety Standard 225 [3].  This rule establishes a new Federal motor vehicle safety 
standard that requires motor vehicle manufacturers to provide motorists with a new way of installing child restraints. 
 
There are many moving parts in the slider and extensive contact between parts.  The part is small in size, but is 
costly to solve due to the complex shape and high degree of contact.  Accordingly, it is not a great candidate for an 
MPP analysis because of the difficulties in performing a domain decomposition that balances the load fairly between 
processors.  It is extremely difficult to balance the needs for equal element computation time and equal contact 
processing.  The network communication is already a significant portion of the elapsed time because the model is 
physically small and each processor can finish its calculations very quickly. 
 
This model was run using SMP-DYNA on a single CPU of System 3 (from Table 1).  The analysis took 19.2 hours 
to complete.  This model was also run on 1 and 2 CPUs of the MCC P-4 Linux cluster (system 2).  The analysis 
completed in   5.57 and 2.96  hours respectively.  For additional CPUs the model didn’t scale well, and required 
more elapsed time than the 2 CPU case. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Elapsed time for a small seat slide assembly model run on two different computer systems using MPP-
DYNA (system 2) and SMP-DYNA (system 3).   
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Case 2 
This model was supplied by the same automotive seat supplier, and was a model of a full seat with a rigid dummy 
and seatbelts.  The run simulated the testing required to meet FMVSS 210 [4] which evaluates the strength of the 
seat with the effects of a person restrained by seat belts, undergoing a frontal crash.  This model had many initial 
penetrations of the seat belt assembly that were handled well by the SMP version of the code.  However, these initial 
penetrations had to be removed before the MPP version could properly handle the analysis.   
 
On the original Sun hardware (system 3, 2 CPUs), the analysis completed in 35.92 hours of elapsed time.  On a 
single CPU of the MCC P-4 cluster, the model completed in 20.4 hours.  Adding a second CPU dropped the elapsed 
time to 13.7 hours.  This domain was also difficult to decompose adequately, because almost all of the contact 
occurred in the slide assembly beneath the seat.  Geometrically, most of the elements were above the seat.  Adding 
additional CPUs did not reduce the elapsed time significantly. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Elapsed time for a full seat assembly model, including seat belts and a rigid dummy. 
 
 
Case 3 
The third case studied was an automotive crash simulation of a mini-van  (Figure 6).  There were 376,703 elements 
in the model, which was a public domain model of the vehicle. Using SMP-DYNA, the model took 68 hours to 
complete on a single-CPU XP1000 (system 6).  The MPP-DYNA run on system 6 took 55.5 hours using 2 CPUs 
and the default domain decomposition (Figure 6b),  and 25.5 hours using 4 CPUs (Figure 7). 
 
The model was run on 8 CPUs of the MCC clusters – both the P-3 and P-4 based systems.  The model ran in 29 
hours on the P-3 system and in 15.15 hours on the P-4 system.  
 
  
 
 a) b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  The mini-van model.  The model contained over 376 thousand elements. a) the default decomposition 
obtained by subdividing the longest dimension is unsuitable for good load balancing.  All of the contact occurs in 
the front domain.  b) better results were obtained with the 4-CPU decomposition. 
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Figure 7.  Elapsed time for solving the mini-van impact problem. 

 
Case 4 
A medium-sized (90,234 element) sheet forming model was studied.  The part in question was an aluminum 
structural part (not shown) which was modeled without adaptivity.  Originally, the model was run on an SGI Origin 
2000 R12K system running at 300 MHz.  The model was run on 1,2,4, and 8 processors and took 67.95,  33.62, 
17.41 and 7.88 hours respectively to complete.  Chu (2000) would suggest that the apparent super-scalability in 
comparing the 8-processor timings to any of the other models is probably explained by the size of the computing 
cache relative to the portion of the model being solved.  As more processors are used, the amount of data handled by 
each computer decreases until eventually the data will fit entirely into cache.  At this point, the computing efficiency 
jumps.  It is also clear that the use of the MPP code on an SMP machine provides for excellent scalability at low 
numbers of processors.   
 
Proving that scalability isn’t everything, when the same model was run on the P-4 system it completed in 16.88 
hours on a single CPU and 3.34 hours on 8 CPUs (Figure 8).  Although the MCC cluster running across a local area 
network did not scale nearly as well as the larger SMP machine, it provided an answer more quickly at a fraction of 
the cost. 
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Figure 8.  Elapsed time for running a medium-sized sheet forming problem on an SGI Origin 2000 and a Pentium-4 
based Linux cluster.  The SGI system (system 5) scales linearly, but the P-4 system (system 2) completes the 
analysis more quickly. 
 
Case 5 
In this model, a large sheet forming operation was simulated.  The panel was a hood inner, and required 205,800 
elements to describe the tooling geometry.  The blank initially required 4800 elements, with a mean element size of 
20 mm.  The model was run adaptively, so at the end of the analysis, the model was comprised of nearly 320,000 
elements.  The originating hardware was the same SGI system for benchmark #4.  On 8 processors of the SGI, the 
model ran in just over 61 hours.  Using 8 CPUs of system 2, the model completed in 32.5 hours. 
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Case 6 
Three successive stages of a hydroforming operation were simulated using LS-DYNA.  During the first stage, the 
tube was bent.  In the second stage, the dies were closed.  In the final stage, end feed and internal pressurization 
caused the tube to expand inside the die cavity. 
 
The models were initially run on an HP-J5000 system (system 4) with 2 CPUs running SMP-DYNA.   Model times 
quoted were for a single-CPU run only because the operating system HP-UX 10.2 did not support parallel execution.  
For comparison purposes, the 800 MHz system (system 1) ran all three analyses on 1,2,4,6, and 8 processors.  As 
seen in Table 2, it took two of the Pentium-III CPUs to match the speed of the single HP J-5000.  It should also be 
noted that the cluster scaled almost perfectly for this application.  Hydroforming, it turns out, is an ideal application 
for scaling of these clusters. 
 
The reasons for this excellent scalability has to do with the nature of hydroforming tubes.  The longest dimension in 
the model is along the length of the tube.  If the domain decomposition proceeds as it should, then each subdomain 
consists of a length of the tube and the associated nearby tooling.  This means that: 

1. each subdomain borders on at most 2 other subdomains, and 
2. the boundary nodes are oriented along the tube diameter, which  is small compared to the tube length. 

The consequences of these facts are that network traffic is minimal, because communication is required for a 
relatively small number of nodes and communication from one subdomain is with at most 2 other subdomains. 
 
Table 2.  Elapsed time (hours) to run 3 different hydroforming models.  The HP models ran the SMP version of LS-
DYNA.  The MPP version was run on the P-III cluster.  It took 2 of the 800 MHz P-III CPUs to match the speed of 
the HP J-5000 system.  Note how well the cluster scales for hydroforming simulations.  Based on previous 
benchmarks, it is anticipated that the P-4 cluster would run in about 50% of the time of the P-II cluster. 
 

Model 
Description 

HP J-5000 
(System 4) 

P-III system (system 1) 

 1 CPU 1 CPU 2 CPUs 4 CPUs 6 CPUs 8 CPUs 
Tube bending 4.02 7.99 3.96 2.08 1.47 1.17 
Die closure 1.30 2.24 1.30 0.72 0.56 0.47 
pressurization 2.38 4.01 2.04 1.11 0.801 0.63 

 
 

DISCUSSION AND CONCLUSIONS 
 
The use of multiple processors has been shown to be an effective method for reducing the elapsed time required for 
finite element simulations.  LSTC currently sells two versions of LS-DYNA capable of using multiple processors.  
Of the two versions, the MPP version has been shown to scale better over a larger range of processors.   
 
Using MPP-DYNA on a cluster of Linux-based computers can provide super-computing performance at workstation 
prices.  This technology, once found only in computer-science laboratories and at research facilities, is now 
available for the industrial user.  It remains a challenge, however, to set up and maintain such a cluster.  Medusa 
Computing Corporation was established in 2001 to provide this service to LS-DYNA customers. 
 
From the results presented here, it is clear that over a limited number of CPUs, SMP machines scale much better 
than clusters distributed over a Fast Ethernet network.  Having said that, the raw speed of the PC architecture is such 
that clusters of PC’s will often beat the more expensive UNIX architectures.  While the benchmark results presented 
here were comparisons between current generation PC’s and older generation Unix workstations, it seems clear that 
for price/performance considerations it is hard to ignore the power of the clusters. 
 
Scalability is a function not only of the computer hardware, but also of the problem being solved.  Some problems 
lend themselves to effective domain decomposition.  Others prove more difficult.  Crash analysis is a particularly 
difficult problem to balance, because contact early in the analysis is very different from contact midway through.  
Hence an optimal decomposition at the start of the analysis may be a faulty decomposition later. 
 
A good domain decomposition is easier to obtain for sheet forming problems, because contact can be more easily 
predicted.  There are fewer contact interfaces, and the main problem is essentially a 2-dimensional one.  The blank is 
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made of shell elements, so it is broken down into rectangles (at most 8 neighbors) and not cubes (with up to 26 
neighbors). 
 
The benefit of moving from 3-D in crash to 2-D in sheet forming is duplicated when moving to 1-D for 
hydroforming.  Granted, hydroforming is not a one dimensional problem, but the domain decomposition quickly 
becomes a 1-D sort.  The resulting problem scales so well because the number of neighboring domains is at most 2 
and the ratio of boundary nodes to interior nodes is small.  If enough processors are applied to the problem, the 
hydroforming simulation will again become a 2-D decomposition, but the elapsed time is likely to be so small at that 
time as to be insignificant. 
 
With the ease-of-use of today’s pre-processors, the power displayed by clusters of PC’s,  and their relatively low 
price,  even small tool and die shops can start to embrace sheet forming simulations. 
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