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ABSTRACT 
 
Numerical simulation of cracked structures is an important aspect in structural safety assessment. 
In recent years, there has been an increasing rate of development of numerical codes for 
modeling fracture procedure. The subject of this investigation is implementing automated 
fracture models in the DYNA3D nonlinear explicit finite element code to simulate pseudo 3-D 
crack growth procedure. The implemented models have the capabilities of simulating automatic 
crack propagation without user intervention. The implementation is carried on solid elements. 
The methodology of implementing fracture models is described. An element deletion-and-
replacement remeshing procedure is proposed for updating the explicit geometric description of 
evolving cracks. Fracture parameters such as stress intensity factors, energy release rates and 
crack tip opening angle are evaluated. The maximum circumferential stress criterion is utilized to 
predict the direction of crack advancement. Seven crack problems are presented to verify the 
effectiveness of the methodology.  Mesh sensitivity and loading rate effects are studied in the 
validation of the presented procedure. 
 
 
 
Keyword: pseudo 3-D fracture simulations, fracture procedures, fracture and nonlinear explicit 
finite element, DYNA3D. 
 
 

                                                 
1 Associate Professor and Director 
2 Graduate Research Assistant 



Code Technology 7th International LS-DYNA Users Conference 

12-42 

INTRODUCTION 
 

Numerical analysis of cracked structures subjected to various kinds of actions is an important 
issue for structural safety. It undoubtedly aids in having a good knowledge of the possibility for 
an existing crack to growth. Many numerical methods have been developed for the simulation of 
fracture processes. Three kinds of well-known numerical models exist to discretize structures as 
follows:  

 
(1) the finite element method,  
(2) the boundary element method,  
(3) the element-free Galerkin method.  
 

The finite element method (FEM) has been in use for over 40 years and is now established as a 
powerful numerical technique for solution of partial differential equations. The field of fracture 
mechanics has benefited significantly by advances in finite element technology. Finite element 
methodology specific to the analysis of fracture mechanics problems has been reviewed by 
Liebowitz and Moyer (1989). The important algorithmic developments which have enhanced the 
numerical modeling of fracture processes were described in this literature. 
The boundary element method (Aliabadi 1993; Portela 1993; and Mi 1996) is a well established 
technique for the numerical solution of boundary integral equations that govern the 
displacements of the crack faces in a cracked body. This technique avoids a large effort of the 
remeshing since only the line or surface representing the crack needs to be remeshed. A 
comprehensive review of the boundary element formulations in fracture mechanics can be found 
in Aliabadi (1997). 
 

The element-free Galerkin (EFG) method was developed by Belytscho and coworkers 
(Belytschko 1994; Belytschko 1995; and Krysl 1999). It has been proved to offer many attractive 
features in the modeling of crack propagation. The element free Galerkin method utilizes the 
gridless method for solving partial differential equations by employing least square interpolants 
for the trial and test functions along with a variational principle (weak form). The approach 
requires only nodes and a description of the external and internal boundaries and interfaces of the 
model. No element connectivity is needed. In the EFG method, the domain boundary is explicitly 
represented, as it is in the finite element methods, and the domain itself is filled with nodes and 
(non-collocated) integration points. However, the displacement interpolant is constructed without 
reference to any explicit connectivity among the nodes. Instead, the interpolant, and its gradient, 
at the integration points are obtained by applying a moving-least-squares interpolation to the 
nodes that lie within the domain of influence of a given integration point. The domain of 
influence is normally taken to be a disc (sphere in three dimensions), with a 'line-of-sight' 
modification near the domain boundary: only nodes that can be reached by a straight line that 
does not pass through the boundary are included in the domain of influence for a given 
integration point. For an integration point that lies in the vicinity of an extending crack, this 
feature causes the set of nodes within its domain of influence to change abruptly as the crack 
advances. (for more details see Rashid 1998). 
Although numerical difficulties still exist, the finite element method has been widely used for 
fracture problems. Koenke et al. (1998) presented a review of numerical techniques for the 
modeling of crack growth. Three basic categories were distinguished in the literature and 
summarized as follows: 
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1. Crack propagation using the smeared crack approach 
This concept has been widely used in finite element simulations for the studies of failure 

analysis (Scordelis 1972; Argyris 1979; Lee 1982; Chang 1987; Hwang 1989; and Vaziri 1992). 
The method associates fracture with element stiffness loss. In this technique, the stress in each 
element is monitored. The failed element remains a continuum but loses its load carrying 
capacity (stiffness and/or strength) in certain directions. A crack is therefore not represented 
explicitly, but modeled as a “smeared crack” by modifying the material constitutive relations in a 
suitable way. The methodology is relatively simple to implement, and eliminates the meshing 
process from each simulation step. However, since the stresses or strains are checked at the 
center of the elements, these stresses or strains are smaller than those at the crack tip so that the 
applied stress which causes fracture is overestimated (Marzougui, 1998). Moreover, the effective 
loss of material at the crack tip significantly alters the crack tip geometry. Results of crack 
propagation simulations are also highly sensitive to the mesh size used. For materials failing in a 
diffuse manner, such as concrete, this method has been successfully used. However, since the 
crack tip in metals remains relatively distinct, the crack tip geometry can not be simulated by 
smeared crack approaches precisely. If elements in the region of the expected crack path become 
too small, there may arise a lack of convergence. Furthermore, the phenomenon of “stress-
locking” can occur in the case of crack propagation not parallel to the direction of element edges. 
Elements in the region of the crack show artificially large stresses. The overall displacements in 
the model may be accurate, but stresses and strain energies calculated within finite elements will 
be incorrect in the crack region (Koenke et al., 1998). 

 
2. Discrete crack propagation using the nodal release approach 

The nodal release approach has been proven to be very robust and easy to implement, even in 
commercial FE codes, and remains a popular technique to model fracture procedure (for details 
see Yagawa 1977; Keegtra 1978; and Bolukbasi 1995). In this concept, two element edges, 
initially constrained to identical displacements, are allowed to separate by releasing the 
constraints and nodal forces which hold the elements together. A new free crack surface is 
therefore generated at the crack interface. In this technique a crack is assumed to propagate along 
existing edges of the element mesh. At each step, one element corner node or edge node is 
separated into two nodes and the crack extends along the respective element length. This 
approach clearly produces an explicit crack opening profile and has a great advantage of minimal 
effort for the mesh modification. It has been proven to be very efficient if a crack trajectory is 
known a priori (Rankin, 1993). But this method is greatly mesh dependence. For the problems in 
which the crack path is uncertain a very fine mesh with considerable numerical effort has to be 
applied. 

 
3. Discrete crack propagation using the delete-and-fill remeshing method 

This concept was first introduced by Saouma and Ingraffea (Wawrzynek, 1991) in the early 
1980s. The approach uses the strategy of the delete-and-fill process for the modeling: First, a 
group of elements in a region around crack front is deleted. After the crack is extended, the local 
domain is refilled with new elements for the new crack tip. The method of remeshing 
intermittently recreates the computational model and allocates the necessary resources to the 
current critical regions of the model. This technique makes it possible to simulate the arbitrary 
curvilinear crack propagation by automatic remeshing process. Currently a number of 
methodologies were described in the literature to fill a 2-D arbitrary domain (Henshell 1975; 
Barsoum 1977; and Lee 1992). However fewer algorithms exist for the generation of 3-D 
arbitrary meshes. Three-dimensional crack propagation involves an evolving 3-D surface, 
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whereas 2-D crack growth can be represented by elongation of a line. Modeling 3-D crack 
growth is therefore inherently more complicated than modeling 2-D crack growth. It is still a 
challenging issue in the development of finite element algorithms. 

 
Several new finite element techniques have been developed to model crack propagation 

without remeshing. An alternative approach to remeshing for modeling of running cracks 
involves the use of moving mesh technique. Atluri et al. (1980) utilized this concept in the 
moving singular element studies. A hybrid element was used to produce reasonable results. The 
main problem with the hybrid approach is the complexity of formulation and difficulty in the 
implementation (Liebowitz, 1995). Rashid (1998) also presented a 2-D moving mesh technique 
called the Arbitrary Local Mesh Replacement (ALMR) method. In his method, two distinct 
meshes are employed: one that surrounds the advancing crack front and moves with it, and the 
other that fills the entire domain. Minimal remeshing finite element method was proposed by 
Belytschko and Black (1999).  In this approach, discontinuous enrichment functions are added to 
the finite element approximation to account for the presence of the 2-D crack. The crack is 
allowed to be arbitrarily aligned within the mesh. For severely curved cracks, remeshing may be 
needed but only away from the crack tip where remeshing is much easier. 
 

Currently a considerable amount of effort has been focused on the 3-D crack growth 
simulations. Krysl and Belytschko (1999) provided an overview of the literature on this area. The 
EFG method was utilized by Krysl and Belytschko (1999) for modeling arbitrary three-
dimensional dynamically propagating cracks in elastic bodies. Mi and Aliabadi (1994) presented 
an application of a dual boundary element method to quasi-static and fatigue 3-D crack 
propagation. Dhondt (1998) proposed an automatic cutting procedure for finite element modeling 
of 3-D mode I crack growth. This methodology allows the finite element method to be applied to 
arbitrarily meshed structures with 20-node elements. During the crack propagation, new 20-node 
brick elements are automatically generated and a subsequent smoothing procedure improves the 
quality of the resulting mesh. 
 

Modeling 3-D crack growth encompasses all aspects of the modeling process from initial 
data preparation to visualization of results. To model an evolving crack efficiently and 
automatically in a complex 3-D structure, one requires two integral components in a simulator: 
crack representation and crack growth mechanics. Representation includes the details of storing 
the geometry of a cracked body in a computer and updating the geometric description to reflect 
crack growth; this includes both the real geometry and the mathematical representation, i.e. the 
mesh. Mechanics includes stress analysis, extraction of relevant crack growth parameters, and 
determination of the shape, extent, and direction of crack growth. These two components form 
the basis for modeling crack evolution (see Carter 2000 for detail). 
 

In recent years, with the evolution of numerical techniques, there has been an increasing rate 
of development of simulation codes for fracture analysis such as EPIC (Lim 1996), FRANC3D 
(Riddell 1997), WARP3D (Koppenhoefer 1998), and so on. The current investigation 
concentrates on the implementation of crack growth models in the large-scale nonlinear explicit 
finite element simulation code DYNA3D (Whirley, 1993). The DYNA3D code is used for 
analyzing the dynamic response of three-dimensional solids and structures. This code uses 
element removal techniques to simulate the failure process. The crack opening profile therefore 
can not be modeled. Furthermore, the stress based failure methodology is not able to describe 
failure characteristics accurately. Therefore, it is important to implement fracture theories for 
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solving crack propagation problems. The code is most suitable and some specific features of 
DYNA3D have great advantages for dynamic fracture simulations. A 2-D fracture model was 
implemented in DYNA3D for a shell element by Marzougui (1998). CTOA and plastic energy 
criteria were utilized for prediction of crack growth. His work has demonstrated the feasibility of 
implementing fracture models in DYNA3D. However, further work is still required for the 
proper implementation of the fracture models for shell elements. The present work concentrates 
on implementing crack growth models for solid elements in DYNA3D.  
 
 

METHODOLOGY OF IMPLEMENTING PSEUDO 3-D FRACTURE MODELS IN 
DYNA3D 

 
In this study, fracture models have been implemented in the DYNA3D code for 3-D crack 

growth simulations. The implemented fracture models have the capabilities of simulating 
automatic crack propagation without user intervention. The implementation is carried on solid 
elements. The input phase subroutines of the DYNA3D code have been modified to read the 
crack input parameters and allocate memory for the fracture model arrays. A uniform crack 
growth with prediction of growth direction is implemented. Crack extension can be provoked by 
several different fracture parameters as follows: 
 
1. The stress intensity factors (KI, KII and KIII) 
2. Energy release rates (GI, GII and GIII) and 
3. Crack tip opening angle (CTOA). 
 
The maximum circumferential stress criterion is utilized to predict the growth direction. An 
element-stress based failure methodology is also provided. Similar to the conventional smeared 
crack approaches, the critical fracture tensile stress is used for activation of crack growth. The 
crack opening profile, however, is simulated here explicitly. The crack propagates in the 
direction perpendicular to the maximum principal stress. The implemented procedure can be 
used to simulate through thickness crack growth. The methodology of implementing the 3-D 
fracture models is described in the following sections.  
 
Evaluation of Fracture Parameters 

In the finite element models for the nonlinear code DYNA3D, an actual 3-D crack shape is 
modeled with the edges and surfaces of solid elements. To evaluate the fracture characteristics, 
in this study, the representation of the 3-D crack tip has been decomposed into a series of “sub-
cracks” at the crack front (see the solid lines in Figure 1). Each sub-crack is defined by three 
nodes with the identification numbers 1, 2 and 3. For through thickness crack, the fracture 
parameters are thus taken as the average of the results obtained from all the sub-cracks it 
encompasses. The evaluated fracture parameters in the developed procedure include the stress 
intensity factors (KI, KII, and KIII), energy release rates (GI, GII, and GIII), and crack tip opening 
angle (CTOA). In the following they are described with some details: 

 
1. Stress intensity factors (KI, KII, and KIII) 

In this study, the stress intensity factors (SIFs) of the three fracture modes (see Figure 2) are 
extracted at discrete nodes from the elastic solution (Aliabadi, 1993) of a cracked geometry:  
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In an elastic crack vicinity, the actual displacements (un, ub, and ut) in the directions normal, 
binormal and tangent to the crack front (local Cartesian coordinate system, see Figure 3) can be 
expressed in terms of the polar coordinates r and θ  (in the n-b plane) as 
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where E is the Young’s modulus; ν  is the Poisson’s ratio; and κ is the Kolosov constant defined 
as 
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The plane strain assumption is employed herein for actual 3-D crack analysis. The plane stress 
case is also implemented in the code for simulations of crack growth in thin shell materials. 
Substituting θ  with ±π into equation (1), the stress intensity factors can be derived from the 
crack surface displacements as  

)uu(
r2)1(4

E
K

)uu(
r2)1)(1(

E
K

)uu(
r2)1)(1(

E
K

ttIII

nnII

bbI

π−=θπ=θ

π−=θπ=θ

π−=θπ=θ

−π
ν+

=

−π
κ+ν+

=

−π
κ+ν+

=

      (3) 

In this study, the stress intensity factors for a sub-crack are evaluated from the displacements of 
its tail nodes (node 1 and node 3, see Figure 1) which should have the same initial coordinates in 
the initial original FE model. Taking r as the average of the distances from these two nodes to 
the tip node 2, we have 
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Assume a nodal position in terms of the global coordinates has the projections (xn, xb, xt) on the 
directions of local system. Eqution (4) can finally be rewritten as 
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In the implemented fracture models, the stress intensity factors are evaluated by equation (5). 
They are calculated and monitored at each time step for further crack growth. 
 
2. Energy release rates (GI, GII, and GIII) 

The total energy release rate, G, is the amount of energy made available at the crack tip for 
the crack extension process per unit area extension of the crack. The expression is given as (Petit, 
1996):   
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where Π is the total potential energy per u7nit thickness; U is the strain energy of the structure 
per unit thickness; W is the work of the external tractions per unit thickness, and a is the crack 
length. In the current fracture models, based upon linear elastic fracture mechanics (LEFM), the 
energy release rates corresponding to the three fracture modes are directly calculated from the 
stress intensity factors using the following relationships (Parker, 1981): 
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with E (Young’s modulus), v (Poisson’s ratio), and E’=E (plane stress) or E’=E/(1- v2) (plane 
strain). 
 
3. Crack tip opening angle (CTOA) 

The crack tip opening angle (CTOA) is another fracture parameter implemented in the code. 
The evaluation of this parameter is based on sub-crack angles. In the simulation of uniform crack 
growth, the actual 3-D crack angle is considered as the average of all the sub-crack angles.  
 
Implementation of The 3-D Crack Growth Criteria  

Several crack growth criteria have been implemented in the nonlinear explicite finite element 
code DYNA3D for activation of 3-D crack growth. These crack growth criteria are described 
below: 
 
a) Maximum principal stress-based criterion 

This criterion is an application of the macroscopic mechanics in fracture analyses. In the 
implemented procedure, the averaged 3-D stress components are obtained from the elements 
around the crack front and subsequently the maximum principal stresses are calculated. The 
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crack is assumed to grow once the maximum principal stress exceeds the material fracture tensile 
stress. Obviously, this criterion requires very fine mesh in the vicinity of the crack tip to obtain 
an accurate stress distribution and consequently accurate numerical simulation. 

 
b) CTOA-based crack growth criterion 

This fracture criterion is based on the macroscopic levels of deformation and has been widely 
used in elastic-plastic fracture analyses (Andersson 1973; Shih 1979; Newman 1984; Dawicke 
1999; and Gullerud 1999). According to this criterion, the crack is extended if the evaluated 
CTOA exceeds a critical value. 

 
c) SIFs-based mixed-mode criterion 

Cracks are assumed to grow once the following equation for the stress intensity factors is 
satisfied. 
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where KIc, KIIc and KIIIc denote the individual fracture toughness values of the three fracture 
modes. The constant parameters α, β and γ should be empirically determined and defined by 
users. If one takes α = β = 2 and selects appropriate values of KIIIc and γ to ignore the term of the 
tearing mode (mode III), equation (8) becomes a well-known fracture criterion first proposed by 
Wu (1967): 
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d) Energy release rates-based mixed-mode criterion 

Cracks are assumed to grow once the following equation for the energy release rates is 
satisfied. 
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The critical fracture values are denoted by a subscript c. With the input parameters GIc = GIIc = 
GIIIc = Gc and α = β = γ = 1, equation (10) can be converted to the total energy release rate based 
fracture criterion (Irwin, 1957), which is given by the following equation: 

cIIIIII GGGGG =++=         (11) 

where Gc is the critical total energy release rate. 
 

e) SIFs-based maximum circumferential stress criterion 
Cracks are assumed to grow once the following equation is satisfied. 
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This maximum circumferential stress criterion (Erdogan, 1963) is initially proposed for two-
dimensional mixed mode fracture problems. However, it has been extended to three dimensions 
(Gerstle, 1986) by combining Mode I and Mode III stress intensity factors into an effective mode 
I stress intensity factor as follows: 

IIIIIeff KBKK +=         (13) 
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where B is an empirically determined factor for combination of KI and KIII. And Ke is the final 
effective stress intensity factor. KIc is the fracture toughness. And θ0 is the predicted crack 
growth angle.  
 
Prediction of The Crack Growth Direction 

In the implemented fracture models, the maximum circumferential stress criterion is utilized 
to predict the direction of crack propagation. The crack propagation angle θ0 is defined as the 
angle between the line of crack and the crack growth direction with positive value defined in the 
anti-clockwise direction. Under mixed mode I and II loading, it can be expressed as (Broek, 
1986): 
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Combining KI and KIII as in equation (13), the prediction of the crack propagation angle is 
extended to a 3-D case as follows: 
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However, equation (15) is not well suited for numerical calculation since an overflow may occur 
if KII is close to zero. For an automatic crack growth simulation, a more general formula is 
desirable to account for all possible loading situations. Mi (1996) has devised a different 
expression of equation (15) as follows and is used in the current study for prediction of crack 
growth direction:  
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The above formula takes the different signs of equation (15) into account and is, from a 
numerical point of view, a much better expression than equation (15). 
 
Automatic Remeshing Strategy 

To model the crack growth explicitly, some modifications have to be carried out on the mesh 
to update the free crack surfaces and crack tip geometry. Thus additional nodes and elements 
become necessary. In the DYNA3D code all the data arrays are static (the array sizes are fixed 
through the simulation), the total number of nodes and elements in the model has to remain 
constant through the simulation. This introduces a problem in the remeshing strategy: how to add 
the new nodes and elements? Currently this problem has been solved by adding dummy nodes 
and elements to the initial FE model before the start of simulation.  
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In the DYNA3D code a failure flag has been provided for each element. Once a failure flag is 
activated, the corresponding element will be removed from the numerical calculation although it 
still exists in the data arrays. The element with activated failure flag is also invisible to the post-
processors like LS-TAURUS. In this study, the databases of the simulation results are modified 
to be compatible with LS-TAURUS for visualization of explicit crack opening profile. In the 
original FE model, initially fictitious coordinates are given to the dummy nodes and failure flags 
are activated for all the dummy elements. The proposed automatic remeshing strategy models the 
explicit crack growth by splitting sub-crack tip nodes. When a crack advances, each related crack 
tip node is assigned with one of the dummy nodes. This dummy node is given the same 
coordinates and velocities as the sub-crack tip node. The sub-crack tip node shares with the 
dummy node the original nodal mass. Meanwhile, the element connectivity is updated such that 
the elements on one side of new crack extension are connected to the added dummy node and the 
elements on the other side are connected to the original node. Actually the elements connecting 
the dummy node are the dummy elements newly added. The original elements at that location is 
deleted by activating their failure flags. The added dummy elements are updated with the same 
material properties, stresses and strains as the elements they replaced. The status of these dummy 
elements is changed by invalidating their failure flags. For compatibility with LS-TAURUS, the 
D3PLOT result file is also modified such that the used dummy nodes have the same initial 
coordinates as the corresponding sub-crack tip nodes and the elements have the current element 
connectivity. 
 
To better understand the automatic remeshing strategy, a 2-D finite element mesh is utilized here 
for illustration (see Figure 4). Figure 4a depicts a previous mesh before crack extension. Assume 
that the current predicted crack direction vector lies in the element A, whose vertexes are 
identified with the numbers 1, 2, 3 and 4. Three different remeshing patterns are possible herein 
as follows:  
 
 Pattern 1: Node number 2 is the nearest vertex to the predicted crack direction vector. 

In this case, node 2 is moved along the element edge 2-3 to create the current crack 
growth direction. A dummy node 1’ is then added to the location of node 1. The elements A 
and B in the previous mesh are deleted by activating their failure flags. Accordingly two new 
dummy elements A’ and B’ are activated to replace the elements A and B. Current elements 
A’ and B’ take the new node 1’ as their vertex and a new crack profile is thus generated (see 
Figure 4b). 

 
 Pattern 2: Node number 3 is the nearest vertex to the predicted crack direction vector. 

After moving node 3 to current crack tip position, a dummy node 1’ is added to the 
location of node 1. The previous elements A and B are removed. The unoccupied region is 
then filled with three new elements A’, A’’ and B’. The elements A’ and B’ are connected to 
the new node 1’, and the element A’’ still uses the original node 1 as its vertex (see Figure 
4c). 

 
 Pattern 3: Node number 4 is the nearest vertex to the predicted crack direction vector. 

Here, node 4 is moved along the element edge 3-4 to create the direction of current crack 
propagation. After introducing the new node 1’, only element B in the previous mesh is 
required to be removed. The new element B’ is then added with the vertex of node 1’. (see 
Figure 4d). 
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As stated above, the presented fracture models generate the direction of crack propagation by 
moving previous mesh nodes along the element edges. When a crack reaches free edges (or 
surfaces) of structures, some nodes on the free edges might be required to move. This creates 
minor geometric change, which is observed in the local crack tip regions at the free edge. 
However, this effect is insignificant to fracture analyses since it only occurs in the last step of 
crack growth. 
 

VALIDATION OF THE PSEUDO 3-D FRACTURE MODELS 
 

In this section, seven crack problems are used to verify the proposed fracture models. All 
finite element meshes are modeled with solid elements. The maximum circumferential stress 
criterion is employed to determine the crack growth direction. Different mesh sizes or loading 
rates are utilized in some examples in order to study the effect of these parameters on the 
behavior and characteristic of crack propagation. The numerical simulations are validated 
quantitatively and qualitatively. All the crack growth processes are automatically simulated 
without user intervention. LS-TAURUS is employed as the post-processor to visualize explicit 
crack opening profiles. The seven crack propagation examples considered are presented next 
with some details. 

 
1. Static stress intensity factor of a central horizontal crack in a square plate 

Stress intensity factors (SIFs) play an important role on the current implementation of the 
fracture procedure. It is necessary to investigate the accuracy of SIFs evaluated by the 
displacement method. Figure 5 describes a benchmark problem to study the effect of mesh 
sensitivity (Xie, 1995). The model is a square plate with a horizontal central crack subjected to 
remotely applied uniform vertical traction σ = 1.0 MPa. The geometry, material properties and 
boundary conditions are shown in Figure 5. The exact value for the stress intensity factor KI is 
4.72 MPa(m)1/2 (Tada, 1973). Figure 6 shows a typical mesh used here for the study of mesh 
sensitivity where the mesh has the same number of elements, n for the rows and columns and 
five layers through the thickness. In an explicit FE program like DYNA3D the evaluated SIFs 
are always given as a function of time. To obtain the “static” KI, in this example the traction is 
applied as a ramp load first and then kept constant after 1.0 second for total of 2.0 seconds 
simulation (see Figure 7). It is well accepted that explicit dynamic codes with long duration 
simulation are an acceptable way of simulating quasi-static problems. Table 1 shows the results 
(at 2.0 second) of the computed KI from the different meshes considered.  
 

Table 1. Simulated results for a central horizontal crack plate 
(exact solution: KI = 4.72 MPa(m)1/2) 

Number of 
Elements 

KI, MPa(m)1/2 
(at 2.0 second) 

8×8×5 2.33 
16×16×5 3.74 
24×24×5 4.28 
40×40×5 4.74 

 
Good correlation occurs in the mesh of 40×40×5 elements. The comparison indicates that the 
SIFs could be underestimated by coarse meshes. Therefore, appropriate element size should be 
selected by users to get acceptable accuracy. 
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2. Dynamic stress intensity factors of a central inclined crack in a finite plate 
This example deals with the determination of dynamic stress intensity factors of 3-D cracks. 

The crack is inclined at 45° in a finite rectangular plate as shown in Figure 8. The plate is loaded 
dynamically in the axial direction by a tensile traction σ = 400 MPa (step function in time). The 
plain strain solution was first presented by Chen and Wilkins (1976) using finite differences and 
has been frequently used as a reference to validate other methods such as the quarter-point FEM 
(Murti, 1986b), time domain BEM (Dominguez, 1992) and EFG method (Krysl, 1999). 
In this example, the problem is studied using 3-D solid elements (the thickness of the plate being 
set to 10 mm, 5 layers of elements through the thickness). Two typical meshes are used herein 
for validation. Figure 9 shows the top views of the meshes (2976 elements in coarse mesh and 
10144 elements in fine mesh). The material is linear elastic with properties as reported by Chen 
and Wilkins (1976): E = 200000 MPa, v = 0.3 and ρ = 5000 kg/m3. Figure 10 shows mode-I and 
mode-II stress intensity factors versus time respectively normalized by σ(πa)1/2. For validation 
the figures also depict the more recent numerical results reported by Dominguez & Gallege 
(1992) and Krysl & Belytschko (1999). It can be seen that the present results from both meshes 
are in good agreement with the reference solutions. However, the coarse mesh causes slight 
underestimation of the peak values.  
 
3. Load-crack extension curve of Al 2024-T3 M(T) specimens 

Gullerud et al. (1999) presented the load-crack extension experimental data from five 2024-
T3 M(T) aluminum specimens tested at NASA-Langley. The specimens were 75 mm in width 
and 2.3 mm through thickness. The central horizontal crack is 25 mm long. The experiment 
consisted of applying a tensile load incrementally and measuring the load versus crack extension. 
A system of guide plates was employed to minimize the out-of-plane deformation during the 
tension.  

 
Figure 11 shows the FE model (7500 elements and two layers through the thickness) used herein. 
The length (L0) of the plate is twice as much as the width. The remote tensile load is applied by 
displacement control. Opposite constant velocities (V) are imposed on both ends of the plate. The 
material properties of 2024-T3 aluminum alloy used here is provided by Dawicke and Newman 
(1999): an elastic modulus of 71400 MPa and a yield stress of 345 MPa. A piece-wise linear 
representation of the tensile stress-strain curve is given in Table 2. The CTOA criterion is 
employed to predict the crack growth. The critical CTOA value is taken as 5.25° (Dawicke, 
1999). In this example, the load-crack extension curve is predicted by the proposed fracture 
model and compared with experimental results (see Figure 12). 
   

Table 2. Tensile stress-strain curve for 2.3 mm thick 2024-T3 aluminum alloy 
Strain 0.00483 0.015 0.04 0.1 0.16 0.2 

Stress, MPa 345 390 430 470 490 490 
 
Different loading rates are considered in this example to investigate the convergence and the 
sensitivity to the loading rate (V/L0). The static stress-strain relationship is used here although it 
should be justified in a dynamic analysis. Figure 13 shows the analytic results of remote applied 
stress versus the crack extension at the loading rates (V/L0) of 1.0, 0.5, 0.25, 0.025 and 0.0025 s-1 
respectively. The results indicate that a greater peak value of the curve occurs at a higher loading 
rate. The convergence of the analytic results can be observed at 0.25, 0.025 and 0.0025 s-1. These 
three convergent curves are also depicted in Figure 12 to compare with the quasi-static test data. 
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The proposed fracture model provides an acceptable prediction, which is in good agreement with 
the test results. 
 
4. Mixed-mode fracture of a central horizontal crack in a square plate 

This example was used by Marzougui (1998) to validate his fracture model. It is a square 
plate with a central horizontal crack (see Figure 14). The plate is subjected to mixed-mode 
loading which is applied by superposing a normal stress σy (mode I) and a shear stress τxy (mode 
II). The ratio of the normal and shear stresses is dependent on the normal stress factor s and the 
shear stress factor t. Eight cases with different stress ratios are considered in this example (see 
Table 3). Figure 15 shows the FE model (4800 elements, 3 elements through the thickness) with 
the linear elastic properties: E = 210000 MPa, v = 0.28. The CTOA criterion is employed to 
activate crack advancement. The critical value is taken as 0.19. 
For an infinite plate with central crack under mixed-mode loading as shown in Figure 14, the 
stress intensity factors (KI and KII) can be expressed in terms of the normal and shear stresses as 
follows (Broek, 1986): 

ataK

asaK

xyII

yI

πσ−=πτ−=

πσ=πσ=
        (17) 

Substituting KI and KII into equation (14) leads to the crack growth angle θ0 prediction equation 
as follows: 
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Equation (18) is used here to compute the theoretical crack growth with the different ratios (s/t) 
of stress factors. The theoretical and simulated results are listed in Table 3 for comparison.  
 

Table 3. Crack growth angle under mixed-mode loading 
Case s t θ0 (Theoretical) θ0 (Simulated) 

1 1.0 0.1 11.203° 11.375° 
2 1.0 0.2 21.089° 21.401° 
3 1.0 0.3 29.103° 29.623° 
4 1.0 0.4 35.357° 35.898° 
5 1.0 0.5 40.208° 40.607° 
6 1.0 0.6 44.004° 44.243° 
7 1.0 0.7 47.022° 47.918° 
8 1.0 0.8 49.460° 49.068° 

 
It can be concluded that the current implementation of the fracture model can predict the mix-
mode crack growth direction very well. 
 
5. Dynamic crack propagation simulation of interacting cracks 

This is an interesting example for dynamic crack propagation simulation. The problem 
involves two interacting edge cracks in a sheet. The cracks at two sides of the sheet are slightly 
misaligned to provide initial asymmetry. During the crack propagation three stages can be 
detected: initially the cracks repel from each other, as growth continues, they attract. The final 
intersection of the two cracks results in the ejection of a small elliptical piece of material. This 
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crack interaction phenomenon was experimentally observed by Sinha et al. (1986). Numerical 
simulations were also reported in the literature (Swenson 1987; Liebowitz 1995; and Marzougui 
1998). 

 
To verify the effectiveness of current implementation of the fracture model, the dynamic 

propagation processes of two interacting cracks is simulated. The FE model (6480 elements and 
two layers through the thickness) is shown in Figure 16. Initially the two edge cracks are slightly 
inclined to provide asymmetry. A constant velocity is imposed on both ends of the plate for 
tension. The material properties of 2024-T3 aluminum alloy are employed for the simulation. 
The crack growth is controlled by the CTOA criterion. Figures 17 and 18 show the close-up 
views of the finite element mesh at different stages of crack propagation. At each crack growth 
step the geometry of the plate is automatically remeshed to generate new explicit crack opening 
profiles. The sequential growth steps are automatically determined by numerical solutions 
without user intervention. This example can be considered a rather severe test of current fracture 
model. As shown in Figures 17 and 18, current fracture model effectively captures the interaction 
of the two cracks: initial avoidance, later attraction and final separation. 
 
6. Crack path deflection due to a hole 

This example was used by Rashid (1998) to simulate the response of an evolving edge crack 
when approaching a circular hole. The example considers a cracked rectangular plate containing 
an off-center circular hole (see Figure 19).  Uniform normal traction is loaded along the top and 
bottom edges of the plate. In such a non-self-similar crack growth problem, the effect of the 
hole’s presence is plainly evident in the crack path. The crack deflection is very dependent on 
initial crack location. An initial location close to the hole could cause the crack path to intersect 
the hole, whereas the crack path is more nearly straight for initial locations that are more remote 
from the hole.  

 
In this example three different initial locations of the crack are considered. Figure 19 depicts 

the initial FE models (2688 elements and two layers through the thickness) and final deformed 
meshes as well as 3-D shaded geometry. The material properties of 2024-T3 aluminum alloy and 
the CTOA crack growth criterion are used in this example. The plots illustrate that the automatic-
remeshing fracture model can reasonably represent the individual crack deflection corresponding 
to different initial crack locations.  
 
7. Growth of cracks emanating from circular holes 

Figure 20 shows a square plate with cracks emanating from two small holes subjected to far-
field tensile loading. In the initial configuration, both cracks have a length of 0.2 in and are 
oriented at 45° and -45° for the left and right holes, respectively. This problem was presented by 
Belytschko et al. (1995) to validate the development of the Element-Free Galerkin method for 
crack propagation simulation. This example is utilized here to test the current fracture model. 
Mesh sensitivity and loading rate effects are also studied here. 

 
In this example, constant velocities V are loaded at the remote edges of the plate to create 

tension. The thickness of the plate is set to 0.06 in and two layers of solid elements are modeled. 
For all the nodes in the model proper constraints are applied to simulate plain strain conditions. 
Figure 21 shows the top view of a coarse mesh (2976 elements) used herein. A refined mesh 
(10144 elements) and a more refined mesh (56200 elements) are also considered in the study. 
Close-up views of theses three different meshes are depicted in Figure 22. To investigate the 
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loading rate effects, the rates (V/L0) of 50.0, 5.0, 0.5 and 0.05 s-1 are considered in the 
simulations respectively. This study uses the linear elastic properties of AISI 4340 steel (Sih, 
1984): E = 30×106 psi, v = 0.3 and KIc = 43.0 ksi (in)1/2 (plain strain). The effective SIF based 
fracture criterion, equation (12), is employed in this example. The same value of KIc is utilized in 
all the cases although actual fracture toughness should vary with loading rate.  

 
Figure 23 provides the simulation results at the rate of 50.0 s-1 with 3-D shaded geometry 

(the scale factor of displacement is set to 10 for better visualization). The crack path curves from 
the different meshes with the different loading rates are plotted to clarify the comparison (see 
Figures 24 and 25). At the rate of 0.05 s-1 no simulation is performed for the finest mesh since it 
required much computation time (this loading rate required millions of cycles in the explicit 
finite element simulation). The simulations indicate that the cracks eventually grow towards the 
holes. More discrepancy of the crack paths occurs at a higher loading rate (50.0 s-1). At the rate 
of 5.0, 0.5 or 0.05 s-1, very good correlation can be observed among the coarse and fine meshes. 
Although, slight divergence of the crack paths can be detected at the area close to the hole. The 
computations in this area are undoubtedly prone to error, since the stress intensity factors 
changes rapidly as the crack approaches the free surface (Belytschko, 1995). In this example, for 
either coarse or fine mesh, the simulated crack path is little sensitive to the low loading rates. 
Theoretically the antisymmetry of geometry and mesh pattern will lead to two antisymmetric 
crack path curves. The growth of each crack should be identical at each step. However, current 
fracture model gives an unexpected prediction for the finest mesh at the loading rate of 0.5 s-1. 
The antisymmetry of the crack growth is disturbed as the cracks approach the holes. The left 
crack grows into the right hole sooner than the right crack and consequently no further growth 
occurs on the right crack. This phenomenon might be triggered by numerical roundoff errors. 
 

 
DISCUSSION AND CONCLUSIONS 

 
Modeling of 3-D explicit crack growth processes has rarely been attempted in finite element 

simulations that utilizes solid elements. This is because of the difficulty in updating the 
geometric description to reflect the evolving crack propagation. In the presented work the 
implementation of 3-D crack growth models in the large-scale nonlinear explicit finite element 
simulation code DYNA3D is conferred. The first stage of the work is presented in this paper, 
which consists on the implementation of a pseudo 3-D fracture models. An automatic remeshing 
strategy is described herein. Explicit crack opening profiles are modeled by splitting crack tip 
nodes. An element deletion and replacement procedure is proposed and presented. The failure 
flag provided in the code is used for each element to control its absence or involvement in 
numerical calculations. Elements with activated failure flag are invisible to the post-processors 
like LS-TAURUS and crack tip geometry is thus displayed explicitly. The use of failure flags 
makes it possible to implement fracture procedure in this code. The proposed methodology has 
the capabilities of modeling automated 3-D through thickness crack growth processes. 

 
Fracture parameters such as stress intensity factors, energy release rates and crack tip 

opening angle are evaluated. The direction of crack propagation is determined from the 
maximum circumferential stress criterion. Currently this option only can be used for simulation 
of through thickness crack growth. The implemented fracture models have been validated 
through several crack problems. Mesh sensitivity and loading rate effects are studied in the 
presented examples. Simulations indicate that the proposed methodology is capable in predicting 
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a curved crack path automatically and efficiently even though the crack growth direction is 
unknown a priori. However, it is found that the stress intensity factors could be underestimated 
in a coarse element mesh. To gain acceptable accuracy, appropriate element size has to be 
selected by users. The development of DYNA3D code with the 3-D fracture procedure is still in 
the progress. Significant effort is concentrated on improvement of current methodology and 
implementation of more theoretical or numerical algorithms. The further work will be presented 
at a later time.  
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Figure 1. Decomposition of a 3-D crack tip. 

 
 
 
 
 
 
 
 

      
 

(a) Mode I (opening mode) (b) Mode II (shearing mode) (c) Mode III (tearing mode) 
 

Figure 2. Three modes of fracture 
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Figure 3. Local coordinates at a 3-D crack front 

 
 
 
 
 

1 2

4 3

A

Previous Crack

(a) Previous mesh

B

D
C

  

1

1’
2

4 3

Current Crack

A’B’

(b) Current mesh (pattern 1)  
 

1

1’ 2

4
3

Current Crack

A’
A’’

B’

(c) Current mesh (pattern 2)   

1

1’ 2

4 3

Current Crack

B’

(d) Current mesh (pattern 3)  
 

Figure 4. Automatic remeshing strategy for crack propagation 
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Figure 5. Statement of central horizontal crack problem 
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Figure 6. FE model of central crack plate              Figure 7. Load curve of remote traction 
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Figure 8. Plate with a central inclined crack under a uniform step tensile load 
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Fingure 9. FE model for plate with a central inclined crack 
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(a) Normalized mode-I SIF versus time 
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(b) Normalized mode-II SIF versus time 

 
Figure 10. Dynamic stress-intensity factors of a central inclined crack in a finite plate 
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Figure 11. FE model for extnsion of an Al 2024-T3 M(T) specimen 
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Figure 12. Comparison of experimental and analytical load-crack growth response 
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Figure 13. Analytical load-crack growth response at different loading rates 
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Figure 14. Plate with central horizontal crack under mixed-mode loading 
 
 
 

 
 

Figure 15. FE model of a plate with central horizontal crack  
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Figure 16. FE model for a finite plate with two asymmetric cracks 
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(a) Initial propagation 

 

 
(b) Crack avoidance 

 
Figure 17. Dynamic crack propagation simulation of interacting cracks 
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(c) Crack attraction 

 

 
(d) Final separation 

 
Figure 18. Dynamic crack propagation simulation of interacting cracks (contined) 
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final geometry (mesh) 

 
 final geometry (shaded) 

 
(a) Initial location of crack is close to the hole 
Figure 19. Crack path deflection due to a hole 
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initial geometry (mesh) 

 
final geometry (mesh) 

 
final geometry (shaded) 

 
(b) Initial location of crack is remote to the hole 
Figure 19. Crack path deflection due to a hole 
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initial geometry (mesh) 

 
final geometry (mesh) 

 
final geometry (shaded) 

 
(c) Initial location of crack is more remote to the hole 

Figure 19. Crack path deflection due to a hole 
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Figure 20. Statement of growth of cracks emanating from circular holes 

 
 

 
 

Figure 21. Coarse mesh for a square plate with cracks emanating from two holes  
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(a) Coarse mesh 

 

 
(b) Refined mesh 

 

 
(c) More refined mesh 

 
Figure 22. Close-up views of FE models with different mesh sizes  
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(a) Coarse mesh 

 

 
(b) Refined mesh 

 

 
(c) More refined mesh 

 
Figure 23. Simulated results (3-D shaded geometry) at the loading rate of 50.0 s-1 

(The scale factor of displacement is set to 10) 
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(a) Loading rate of 50.0 s-1 
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(b) Loading rate of 5.00 s-1 

 
Figure 24. Study of mesh sensitivity and loading rate effects 
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(c) Loading rate of 0.50 s-1 

 

Loading Rate: V/L0 = 0.05 s-1

coarse mesh

refined mesh

 
(d) Loading rate of 0.05 s-1 

 
Figure 25. Study of mesh sensitivity and loading rate effects (continued) 
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