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ABSTRACT

A coupled finite element and mesh-free method for the solid and structure analysis has been proposed. This method
is developed to minimize the mesh distortion problems encountered in the finite element analysis and to reduce the
high CPU cost associated with the mesh-free computation.

To couple the mesh-free method with the LS-DYNA, an interface constraint has been developed. This interface
constraint is introduced onto the interfaces between finite element and mesh-free zones, and mesh-free and mesh-
free zones. The completeness condition isimposed in the solution approximation to achieve the desired consistency
across the interfaces.

To satisfy the linear exactness in the mesh-free Galerkin approximation of the Dirichlet boundary value problem, two
integration constraints have been developed. A local boundary integration scheme has been proposed to satisfy the
first integration constraint and to eliminate the possible hourglass modes. The interface constraint is further
extended to the essential boundaries to meet the second integration constraint and to reduce the computation time on
the imposition of essential boundary conditions. Several examples are solved to evaluate the numerical performance.
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INTRODUCTION

Structures subjected to severe material distortion commonly exist in survivability, safety and manufacturing related
applications in the defense, aerospace, and automotive industries. Typical examples in the automotive industry are
vehicle crashes in frontal and side impact, fuel tanks subjected to impact load, and metal parts manufactured by
forging or stamping processes. Despite its success in the analysis of geometric and material nonlinear behavior in
structures and solids, the widely used finite element method exhibits a number of shortcomings in handling design
problems involving large deformation, high gradients, localization, or moving discontinuities. These difficulties are
partially due to the regularity requirement of mesh discretization. In the industrial community, this becomes one of
the most challenging tasks in numerical simulations.

In recent years, classes of mesh-free methods have been developed for specific applications [1, 2, 13]. In these
methods, the domain of interest is discretized by a scattered set of points. The uniqueness of the mesh-free methodsis
due to the development of new interpolation/shape functions that alow the interpolation of field variables to be
accomplished at a global level without the usage of meshes. These methods are ideal for hp-adaptivity, fracture
problems, multiple-resolution analysis, and large deformation problems. However, most of the mesh-free methods
consume considerably higher CPU time than the finite element methods.

To resolve this problem, several mixed finite element and mesh-free methods have been proposed [3, 12, 15]. The
objectiveisto use the advantages of each method. Belytschko et al. [3] first introduced atransit element that is of the
size of one finite element and the linear interpolation of mesh-free. Wagner and Liu [16] proposed a corrected
collection method. Those methods require an extra degree of freedoms for the coupling of the conventiona finite
element method and mesh-free method. Huerta et al. [12] revised Belytschko's approach and propose a mixed
hierarchical approximation based on the element-free Galerkin method [2].

In this paper, we present a coupled finite element and mesh-free method in conjunction with the LS-DYNA [11]
code for explicit dynamic analysis. This paper is organized as follows: In first part, the development of the coupled
finite element and mesh-free method is described, and the required interface constraints and consistency conditions
across interfaces are discussed. The second part presents the coupled finite element and mesh-free formulation for
explicit dynamic analysis. Two integration constraints are developed to satisfy the linear exactness in the mesh-free
Galerkin approximation of the Dirichlet boundary value problem. Numerical results are presented in the third part to
demonstrate the effectiveness of this development, followed by conclusions and discussions.

A COUPLED FINITE ELEMENT AND MESH-FREE METHOD

To reduce the mesh distortion problems in standard finite element analysis, the mesh-free computation is added into
the existing finite element based analysis model. The coupling of this mesh-free computation should be
computationally efficient, with few modification of the original analysis model, and numerically consistent.

In conventional coupling methods, a layer of finite elements is added onto the interface between each finite element
and mesh-free zone. The shape functions of those interface elements are comprised of the standard finite element and
conventional mesh-free shape functions with the completeness condition imposed to satisfy the consistency.
Nevertheless, these methods till require the structured interface elements and their performance are affected by the
elements regularity.

To avoid the structured interface element requirement, an interface congtraint is proposed. The idea of this proposed
interface constraint is to introduce a strip of finite element ‘nodes’ (instead of using a layer of structured interface
elements) on the interface between finite element and mesh-free zones, and mesh-free and mesh-free zones as shown
in Figure 1. These additional nodes are taken to be the same nodes from the finite element based analysis model and
do not reguire an extra degree of freedoms. As a result, the computation preserves the mesh-free unstructured
characteristics, modification effort for the standard finite element based analysis model is minimized, and the
computation can be efficient.
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Figure 1. A two-dimensional FEM analysis model with three added mesh-free computation zones: Mesh-free A, B
and C and four corresponding interfaces.

Derivation of the coupled finite element and mesh-free method is presented in following section. At first, the mesh-
free approximations are constructed based on the framework of moving least-squares interpolation. The element-free
Galerkin method (EFG) [2] and the reproducing kernel particle method (RKPM) [13] are two representatives of
moving least-squares approximation. In this study, we formulate the mesh-free approximation by the RKPM.
According to the proposed idea, the discrete sol ution approximation at a point x is obtained as

KP
DM (X x—x, )}V X€E gy R

u (x)= Uih( X)= NP - e e M . @
Tln . m . .
D WM OGx=x)dy + D DM (X X=X )by 1V XE Ry © R
1 L
X| € Qytestiree XLE ntartace
where @, denotes the sub-domain for the finite element computation and @, .. isthe sub-domain for mesh-free

is a bounded domain in R%and I

Interface

computation. 2 := Q.. U2euiee 1= 20y N 2yeiree 1S the interface
between the finite element and mesh-free sub-domains or the interface between any two mesh-free sub-domains.

W; "l is called the reproducing kernel function, and is usually expressed by a linear combination of n-th order local
basis functions and a compact support kernel function; [n] denotes the order of basis functionsand ‘a’ is the support
size of the kernel. @™ is the standard finite element shape function with order of interpolation [m] . NP is the total
number of mesh-free particles that influence the solution a point X. KP is the total number of the finite element
nodes per element when point x is located inside the finite element zones. d, is the coefficient of the

approximation, and in general is not equivalent to the physical displacement. MP is the total number of the finite
element nodes on the interface that influence the approximation.

Using the following reproducing conditions [14], one can restore the polynomials to a specific order by requiring the
zero-th moment [14] to be one, and the higher order moments to be zero. The reproducing condition also refers to
the completeness condition of an approximation, and is important for the convergence in the Galerkin methods.

NP MP
DT (X=X )Xy X3+ D @ (X X=X, )Xy, Xk, =Xy X), i+ j=0,...,n 2
J

I
1€ Qyesiree X3€ Lintertace

J:;
It is important to notice that, in most cases, the order of finite element interpolation [m] is chosen to be the same as
the reproducing order [n], and the approximation is continuous everywherein @, . If the reproducing order [n]

is larger than the finite element interpolation order [m], i.e. n > m, then continuity is preserved only in
Thus, discontinuities in the approximation are induced along 7

2 Meshfree \ E nterface * nterface *
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Satisfaction of the reproducing conditions in Equation (2) leads to the following coupled finite element and mesh-
free sol ution approximation with the n-th order solution completeness.

N NP MP - NP
U (x)= Z %(X)dn + Zd).] (X)du = Z%(X)dn ®
X € Qytestires X3€ Lintertace X) € Qyestiree

where

Z(00= > (HT M OH(x-x,)
- @
- g’: H o (X —% )M [n]ij( X )H ln]( X=X, )¢Jlm](X; X=X, )}Wa( X=X, )dil

X3€ Mintertace

5’7| is the reproducing kernel function corresponding to the mesh-free node I, and @[™ is the standard finite
element shape function associated with the finite element node J. ¥ s the modified coupled finite element and

|
mesh-free shape function for the node .

It has been shown by Wu [18] that for Equation (1) to be conforming across any interface, a necessary condition is
required which is

Y—;I ( X) =0 for all nodes {I : SJpp( ,lll )ﬂ Enterfaoe # 0} and Xe Enterface (5)

We call Equation (5) the interface constraint. In other words, the shape functions on the interface between the finite
element and mesh-free zones are reduced to standard finite element shape functions and pose the Kronecker delta
property. Therefore, there is no non-conforming problem for the shape functions across the interface.

When x € 24 \ 1|

interface» @Nd N'= min Equation (2), the solution approximation will still meet the mth-order
reproducing conditions.

FORMULATION FOR EXPLICIT DYNAMIC ANALYSIS
In this section, solution of the governing eguations using the proposed coupled finite element and mesh-free
approximation is achieved under the framework of the Galerkin weighted residual method. To satisfy the linear
exactness in the Galerkin approximation, two integration constraints are introduced. A new mesh-free approximation
is developed based on these two integration constraints, and a spatial integration schemeis introduced for the domain
integration.
Recall the Lagrangian partial differential equation of motion

pi=V.e-f, in 2, Q2=0,, U2 ne (6)
with the divergence operator V , the body force f,,, and the essential and natural boundary conditions

u=u, on 7, @)

e-n=hon I,

and with initial conditions
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U( X,O):UO(X) (8)
U(X,00=u’(X)

The left side of Equation (6) is the material time derivative and will involve convective terms if the Eulerian kernel
functions are used. To avoid the tensile instability caused by the Eulerian kernel functions [4], the Lagrangian kernel
functions are implemented in this study.

To solve this set of partid differential eguations with the Galerkin method (which is considered as standard for the
development in the finite elements based on the displacement method), the equilibrium in its strong form of
Equations (6)-(8) is weighted with some test functions defined by W ={w/we [*(£),w=0 on I} The

corresponding weak form of Equation (6)-(8) becomes:
J.pr\NUdQ:LXvVAadQ-J.QvaAfbdQ—J.r\hNAhdI" ©)
with

u( X0)=u’(X) (10)
U(X0)=u(X)

The next step in the discretization is to choose a finite dimensional subspace U " < U with basis ¥, (1 =1...n).
‘f’. (1 =1...n) are the shape functions obtained from Equation (1). To this end, the basis of weighted functions is
chosen to be the same asthe trial functions after the spatial discretization. Since we choose the weighted functions to
be in H;(42), we can integrate by parts and obtain the discrete Galerkin weighted residual formulation. The

references for the detailed derivation of weak equations and the imposition of essential boundary conditions using
kinematically admissible mesh-free shape functions can be found in [5-7, 17]. Following the derivation for explicit
time integration, the equations to be solved have the form

ATATMAT = AT AR ay
where
i, =[d, d,]1"
M,y = [, OO, 00dR =, (X (X )de2 a2
R :ffzx‘;f(x)‘ﬂdﬂ—[ﬁf’.(x)h] =l B0 A2
and

U=Au A, =% (X,) (13)

Usually, the numerical integration in Equation (11) is evaluated by Gauss quadrature using the so-called background
mesh. However, the Gauss integration method fails to satisfy the linear exactness in the mesh-free Galerkin
approximation of a second-order partial differential equation. Moreover, a higher order quadrature rule is often
required for better accuracy, and thisis one of the major causes of high CPU consumption in mesh-free methods. For
convergence reasons, an integration constraint is required as a necessary condition for the linear exactness in the
mesh-free Galerkin approximation of Dirichlet boundary value problems [9, 10]. Here, we cal this the first
integration constraint and it is given by

[ Brde2=0 for all interior nodes {i : SUpp(¥, ) A Iy =0} (14)

or in the discrete form,
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Zvliﬁ (x;)A, =0 for al interior nodes {I : supp(‘i;l )mrhoundary :0} (15
J=1

where B, isthe gradient matrix; A, isthe weight of the domain integration point.

To meet this integration constraint, a stabilized conforming nodal integration method (SCNI) [9, 10] has been
proposed. This method was originally designed as a strain smoothing stabilization in the strain localization analysis
[8]. The method was further extended to minimize the integration errors and improve the computation inefficiency in
the conventional mesh-free higher-order Gauss integration method.

From our numerical studies we observed that SCNI fails to satisfy the linear exactness in the cases when the supports
of inner nodes cover the essential boundary nodes. In other words, the solution fails to display alinear displacement
field in the Galerkin approximation of Dirichlet boundary value problem if 3{x, }for {I : supp(¥, )T, #0}-

Therefore the satisfaction of first integration constraint is said to have passed a ‘weak’ linear exactness test. Wu
[18] has further proved that for the mesh-free solution to satisfy the linear exactness test, an additional integration
constraint is required.

P, (X )Xy =0 VX, € Iyand Xy € 2yepe\ 7 (16)

9
M=1

We call Equation (16) the second integration constraint. It can be proved that the conventional mesh-free shape
function and the coupled shape function ¥ in Equation (3) do not meet this requirement and therefore failsto satisfy
the linear exactness in the mesh-free Galerkin approximation of Dirichlet boundary value problem. Moreover, the
calculation of Equation (11) and the generalized displacement in Equation (13) by the conventional mesh-free
approximation requires additional efforts for the matrix multiplication during each time step. Therefore, much higher
computation time is expected in the implicit calculation. This is another major cause of high CPU usage for the
mesh-free method.

To resolve the problem in the violation of the second integration constraint, and to improve the inefficiency in the
calculation of Equations (11) and (13), the interface constraint concept is extended to the imposition of essential
boundary conditions and contact conditions. By further extending similar constraint from interface to boundary, the
solution approximation in the mesh-free zone is modified as

NP MP NP
U.h(x): Z Wa[m](X;X_XI )i, + Z¢Em](X;X_xL)d|L: Z%(X;X_)ﬂ )d,
I L 1
X| € Qyiesiree X €/ boundary X € Quesniree

WV X€ Qyesirees 1 cl,

interface boundary

17

It has been proven [18] that this new solution approximation satisfies the second integration constraint.

Another major shortcoming of the SCNI method is its inability to couple the mesh-free method with the finite
element method. Thisis because the SCNI method is a nodal integration method, and al the quantities are computed
and assigned to the nodes. As aresult, internal variables such as strains and stresses evaluated at the interface nodes
between finite element and mesh-free zones, and mesh-free and mesh-free zones are inconsistent. Moreover, from
our numerical studies, it is aso shown that the SCNI method displays hourglass modes when the support size is small
or ahigh order basis function is adopted in the analysis.

In order to avoid the undefined nodal quantities on the interface and also to eliminate possible hourglass modes
observed in the SCNI method, a modified local boundary integration method is introduced in this research for the
domain integration. This method is equivalent to the two points Gauss integration with local boundary integration
performed on each gauss point. For a more detailed derivation on the modified local boundary integration method
see Wu [18].
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To introduce the strain smoothing formulation into the Galerkin approximation, the mixed variational principle based
on an assumed strain method is considered [9, 10]. Substituting the displacement and smoothed strain
approximations into Equation (11) and performing the local boundary integration method [18], the discrete system
equation becomes

MU: fext_ flm(%ulh) (18)
In the explicit dynamic analysis, a lumped mass matrix is considered for the computation efficiency. In this study, a

row-sum method is used for the construction of the lumped mass matrix. Recall the consistent mass matrix in
Equation (12), and perform the row-sum method, the diagonalized mass vector is given as

M|Iump:ZM|J:'[Q pOg(X)ZWJ(XﬁQ:L} p°'[7|(X) (19)

The discrete formof /™ in Equation (18) is
. ~ NE nint _ _ _
fVU) =D Y B (X, )G - (F (%, DI(X,)A, (20

IE=1g=1

where G is the transform matrix of the inverse of the smoothed deformation gradient for the usage of Lagrangian
kernel function. For example, in atwo-dimensional problem

F.' 0 R o
G'={0 Ff 0 F (1)

NUMERICAL EXAMPLES
Helmholtz Equation
To evaluate the performance of the proposed method, the Helmholtz equation is solved. In general, the Helmholtz
equation considers the wave equation for cases where all data are simple-harmonic. The Helmholtz equation admits
the family of localized asymptotic solutions, which are globally free of singularities, and usually provides an
effective tool to study the integration representation of high frequency wave fields.

In this research, we consider the following one-dimensional Helmholtz equation with dimensionless unit given by
Vau(x)+k?u(x)=0, on 2={x|0< x< 25} (22)
with Dirichlet boundary conditions.

u(0)=1u(25)=0 (23)

where V?is the Laplacian, k is the wave number. For imaginary k, the equation becomes the spatial part of the
diffusion equation. For real k, the solution of Helmholtz equation represents the spatial part of the wave eguation.
When Kk is zero, the equation reduces to the Laplace equation.

In this example, twelve uniformly distributed particles with the wave number equal to one and three are studied
respectively. The particle number is chosen such that the discretization is close to the Nyquist limit and waves are
alowed to propagate. The effect of the mesh-free approximation order is also considered. For the basis function
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order of one, normalized kernel function support of 1.5 is used; for the basis function order of two, normalized
support of 2.5 is used. Comparisons between the consistent mass and lumped mass formulations are made.

When the wave number is one, the displacements obtained from the consistent mass and lumped mass formulations
match the analytical solution very well for two different approximation orders as shown in Figure 2. The sguare
symbol denotes the results with the consistent mass formulation, the triangular symbol represents the results with the
lumped mass formulation, and the solid line is the analytical solution.

Displacement
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|~
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(a) basis function order isone (b) basis function order istwo.
Figure 2. Displacement comparisons between consistent mass and lumped mass when the wave number is equal to
one

Figure 3 shows, for higher wave number (k = 3) with approximation order equal to one, the consistent mass
formulation still provides good performance whereas the solution obtained from the lumped mass loses some
accuracy. By adding more particles, the discretization error in the lumped mass method could be minimized.
Alternatively, the accuracy could also be improved by using higher order basis functions as shown in Figure 3 (b).
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Position Position

(a) basis function order is one (b) basis function order is two
Figure 3. Displacement comparisons between consi stent mass and lumped mass when the wave number is equal to
three

Frictional Forging

This problem is studied to identify the applicability of the coupled finite element and mesh-free method to path-
dependent materials with frictional contact conditions. A metal work piece compressed by a cylindrical punch as
described in Figure 4 is analyzed. The plane-strain condition is considered. The punch is treated as arigid body, and
only the work piece is considered to be deformable. The material properties of the work piece are: initial density =
10E-3 |bf -s?/in*, Young's modulus = 6.825E7 psi, Poisson’sratio = 0.3, and J2 perfect plasticity with yield stress
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=6000.0 psi. The friction coefficient between the work piece and punch is assumed to be 0.2. The velocity for the
punch is 0.01 in/s. One mesh-free zone and the corresponding interface are added into the finite element based
analysis model. Conventional finite element analysisis also conducted for comparison.

The analysis by the finite element method fails when severe mesh distortion occurs near the corner of the cylindrical
punch as shown in Figure 4. The corresponding effective plastic strain is plotted in Figure 5. It is shown that finite
element analysis displays a high level of effective plastic strains due to the tangled elements. As aresult, a high level
of stress concentration is expected in the conventional finite element analysis. On the other hand, the coupled finite
element and mesh-free method effectively avoids the mesh tangling and provides smooth strain and stress
distribution as shown in Figure 4 and 5. The progressive deformation obtained from the coupled finite element and
mesh-free method isillustrated in Figure 6.

LS-DYNA970

|
L

,¢||||||||||||| il
i

Figure 4. Comparison of deformed shapes.
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Figure 5. Comparison of effective plagtic strain distribution.
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Figure 6. Progressive deformation by LS-DY NA 970.

CONCLUSION

To efficiently assess structural survivability, reusability and manufacturing for the industrial applications using
simulation technology, a coupled finite element and mesh-free computational method is proposed for effective and
redlistic simulation of severe material deformation in structures.

To couple the mesh-free method with LS-DYNA, an interface constraint has been developed. To satisfy the linear
exactness in the mesh-free Galerkin approximation of the Dirichlet boundary value problem, two integration
constraints have been developed. A loca boundary integration scheme with the coupled finite element and mesh-free
shape function has been developed to satisfy the two integration constraints, to eliminate the possible hourglass
modes and to reduce the computation time on the imposition of essential boundary conditions.

This method has been shown to perform well for explicit dynamics problems. The extension of this method to
implicit analysis and shell formulation is under investigation.
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