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ABSTRACT 
 
It is becoming commonplace to use numerical simulations supported by limited experimentation for the 
characterization of physical phenomena.  This trend, with its perceived potential for reducing costs, is the basis for 
the simulation-based procurement initiatives currently gaining momentum within the government and industry.  
Insuring the quantitative viability of a simulation-based procurement still requires some experimental data upon 
which the assessment of simulation accuracy can be based.  In addition, it requires minimizing the differences 
between corresponding analytical and experimental results in physically meaningful ways, and characterizing the 
ability of the models to predict future events.  The purpose of model validation and uncertainty quantification is to 
confirm the correctness and credibility of numerical simulations, so that the underlying models may be used with 
greater confidence to extrapolate limited test experience to a range of practical applications. 
 
In this paper, an advanced principal components-based computational procedure is demonstrated by validating the 
DYNA models used to achieve HFPB numerical simulations of physical processes important to assessing weapon-
target interaction.  Bayesian statistical parameter estimation is used to estimate material parameters that cannot be 
measured directly, such as strain rate enhancement and shear dilatency in reinforced concrete structures.  This 
demonstration is performed using an updated MATLAB® Nonlinear Model Validation and Verification Toolbox.  
The work reported in this paper has resulted in improvements to the original Toolbox.  A multi-level parameter 
estimation procedure is implemented to sequentially accumulate information from prior estimates in a Fisher 
information matrix for use in subsequent parameter estimates.  The use of a generic uncertainty model in estimating 
the predictive accuracy of future DYNA simulations is enhanced through the use of a reduced set of principal 
component metrics and a basis augmentation technique. 
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INTRODUCTION 
 
The Defense Threat Reduction Agency (DTRA) has promoted the verification and validation of nonlinear dynamic 
codes and models for many years.  Numerous precision tests have been conducted over the years to support this 
effort, leading to codes such as SHARC (Hikida, et al., 1988), AUTODYN (Century Dynamics, 1989), and 
DYNA3D (Whirley and Engleman, 1993) that generate high fidelity physics-based (HFPB) models of explosive 
loads on structures and of structural response to those loads in terms of structural damage and residual strength.  The 
purpose of verification and validation is to confirm the stability and accuracy of numerical algorithms and the 
behavior of material models under controlled conditions, so that the codes may be used with greater confidence to 
extrapolate limited test experience to a range of practical applications.  The difficulty with this approach has been 
the lack of a coherent methodology and computational tools for its implementation, especially tools for model-test 
comparison, model updating, and predictive accuracy assessment. 
 
The organization of the tools developed under this project is shown in Figure 1.  The model-test comparison portion 
includes tools for statistical analysis of the differences between model predictions and test measurements based on 
either direct or principal components comparisons.  The model updating section includes tools for parameter 
sensitivity analysis, parameter effects analysis, and response surface modeling.  It also includes tools for the genera-
tion of surrogate models, as well as various continuous and discrete parameter estimation algorithms.  The predictive 
accuracy assessment portion includes a tool for evaluating generic modeling uncertainty based on principal 
components derived from analysis and test data, and a tool for propagating these statistics through models to 
evaluate their predictive accuracy.  Tools for preparation of data for these analyses, such as scaling, shifting, 
interpolation, etc., are also included. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Design for Updated Nonlinear Model Validation Toolbox 
 

THEORETICAL APPROACH 
 
The tools for model validation are based on principal components analysis of model predictions and experimental 
measurements.  Principal components analysis facilitates comparisons of data useful for model updating and 
uncertainty analysis.  It provides a simple means of generating local, surrogate models useful for parameter 
estimation with computationally intensive finite element models. 
 
The following subsections update the Theoretical Approach outlined in (Anderson, et al, 2000), using a more 
conventional notation.  The basic approach is the same as that in (Anderson, et al, 2000), so that the same text and 
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same equations can be used with the new notation.  Updates to the previous methodology appear in Equations (6d,e), 
(9b) and (11) that introduce, respectively,  
 

● Basis augmentation to the improve the accuracy of uncertainty analysis, 
● The use of Fisher information matrices to accumulate information from prior estimates in sequential 

estimation, and 
● The use of a reduced set of uncertainty metrics for uncertainty quantification.  The reduced set removes 

redundancies in the original set, and reduces the number of metrics by nearly half. 
 
This paper along with the earlier paper (Anderson, et al, 2000) constitute a complementary set in that the parallel 
development of the theory in two notational systems provide a link between previous papers, and those that will be 
published in the future.  The numerical example presented in the next section is also an extension of the numerical 
example presented in (Anderson, et al, 2000), in the sense that this example takes up where the previous example 
ended.   
 
Principal Components Analysis 
Principal components analysis is based on the singular value decomposition (SVD) of a collection of time-histories 
(Klema and Laub, 1980).  Let ( )x t  denote a response time-history, where x may be displacement, velocity, or any 
time-dependent quantity of interest.  A response matrix, X, is a collection of discretized time-histories, 
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where each row corresponds to either a different measurement location or set of physical parameters, and each 
column corresponds to response at a specific time.  The SVD of X may be written as 
 

 TX U VΣ= , (2) 
 
where U is an orthonormal m m×  matrix whose columns are the left singular vectors of X, Σ  is an m n×  matrix 
containing the singular values of X along the main diagonal and zeros elsewhere, and V is an n n×  orthonormal 
matrix whose columns correspond to the right singular vectors of X. 
 
The matrices on the right hand side of (2) may be partitioned so that 
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where Σ°  is the diagonal matrix of nonzero singular values, iσ  ( 1, , min( , )i p m n= ≤K ), U°  and V°  are the 
matrices of left and right principal vectors, respectively, corresponding to the nonzero singular values, and U⊥  and 

V⊥  span the orthogonal complements of the respective subspaces spanned by U°  and V° .  By (3), 
 

 TX U VΣ° ° °= . (4) 
 
The columns (rows) of U° ( V° ) are pairwise orthonormal, i.e., 
 

 T T
pU U V V I° ° ° °= = , (5) 

 
where pI  is the p-dimensional identity matrix.  The factorization given by (4) is called the principal components 
decomposition (PCD) of the response matrix (Hasselman, Anderson, and Gan, 1998).  For notational simplicity 
and convenience, the left superscripts °  in Eq. (4) will be dropped in subsequent formulations. 
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Model-Test Comparison 
Principal components methods are useful for nonlinear model-test correlation for the same reason that modal 
properties are useful in linear structural dynamics.  In nonlinear models, however, the interpretation of these 
“modal” properties depends on the selection of response data included in ( )X t .  Nevertheless, there are certain 
properties of the PCD that can be exploited for purposes of model-test correlation.  These properties are suggested 
by the following equations: 
 

 T
mod expU U U=% , (6a) 

 1
mod expΣ Σ Σ−=% , (6b) 

 T
mod expV V V=% , (6c) 

 
provided that each of left and right singular vectors satisfies 
 

 1 T
j jU U ε− <% % , (6d) 

 1 T
j jV V ε− <% % , (6e) 

 
where modU , modΣ , and modV  represent “modal” parameters derived from analysis for comparison with the 
corresponding “modal” parameters expU , expΣ , and expV  derived from experimental data.  When (6d) and (6e) are 
not satisfied, usually because of too few rows in (1), then some form of basis augmentation is required as provided 
for in the toolbox. 
 

Model Updating 
The PCD furnishes a compact representation of the response of a nonlinear model.  The scaled right principal 
vectors, i iVσ , represent the response time-histories of the principal components.  Each row of the left principal 
vector matrix, U , denotes the specific linear combination of the principal component response time-histories which 
reproduces the total response time-history at the corresponding value of the parameter vector, θ , and spatial 
location of the response. 
 
For example, when each row of the response matrix corresponds to the response at a single location and a unique set 
of parameters, then each left principal vector can be considered as a function of the parameter vector only.  If the left 
principal vectors are considered as functions of the parameter vector, θ , then ( ; )x t θ  may be approximated by 
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where the columns of ˆ ( )U θ , ˆ ( )iU θ , are represented by individual response surfaces (Hasselman, Anderson, and 
Zimmerman, 1998). 
 
Consequently, one may define a Bayesian objective function of the form 
 

 ( ) ( ) ( ) ( )1 1T T
XX o oJ X X S X X Sθθθ θ θ θ° − ° −= − − + − −

r r r r
, (8) 

 

where θ  and oθ  represent the current and initial estimates of the variable parameter vectors, respectively, and X
r

 

and X° r  represent the measured and currently predicted vectorized responses, respectively.  The covariance matrices 
Sθθ  and XXS represent uncertainties in the initial parameter estimates and test data, respectively.  The 

corresponding Fisher information matrices, Fθθ  and XXF , are the inverses (or pseudoinverses) of Sθθ  and XXS , 
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respectively.  Bayesian estimation provides a revised covariance matrix and a corresponding revised Fisher 
information matrix of the updated parameter estimates given respectively by 
 

 ( ) 1* 1 1T
X XX XS S T S Tθθ θθ θ θ

−− −= +  (9a) 

 
and 
 

 * T
X XX XF F T F Tθθ θθ θ θ= + . (9b) 

 
where XT θ  is the sensitivity matrix, /X θ∂ ∂ , relating the response vector to the parameter vector, and F  denotes 
the Fisher information matrix. 
 
The Fisher information matrix is defined as the inverse of the corresponding covariance matrix (Walter and 
Pronzato, 1997).  When the symmetric non-negative-definite covariance matrix is rank-deficient (i.e. singular), the 
inverse implies a pseudo-inverse satisfying the Moore-Penrose conditions (Golub and Van Loan, 1989).  
Information content may be quantified in terms of a scalar information index, defined as the trace of the Fisher 
information matrix normalized by pre and post-multiplying it by a diagonal matrix of the mean values of the metrics 
used to define the covariance matrix.   For example, in the case of a one-by-one covariance matrix, i.e. a scalar, the 
information index is simply the inverse of the coefficient of variation squared.   
 
Information content is relative to the metrics used to define the covariance matrix.  Therefore, the information 
content of the measurement information matrix and that of the parameter information matrix may not be compared 
directly.  However, if the measurement information matrix is transformed to the parameter space by the proper 
sensitivity matrix, then the information index of the transformed measurement information matrix, and the prior and 
updated parameter information matrices, may be compared.  The additive nature of information matrices resulting 
from Bayesian sequential estimation as indicated in Equation (9b) suggests that information is cumulative from one 
Bayesian update of the parameters to the next. 
 

Uncertainty Analysis 
When the principal components approach is used to represent a nonlinear model, the parameters are U , Σ , and V , 
and modeling uncertainty is defined in terms of these parameters.  Once a covariance matrix of the modal 
parameters is obtained, it can be transformed to obtain a covariance matrix of the response variables.  The predictive 
accuracy of the model is thereby determined (Hasselman, Chrostowski, and Ross, 1992, and Anderson, Gan, and 
Hasselman, 1998). 
 
 
A first order approximation of the response error matrix is given by 
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where I∆Ψ Ψ= −% % , I∆Σ Σ= −% % , and 1   T
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Equation (10) has a particularly simple form when the matrix, X∆ , is also vectorized as X∆
r

, 
 

 XYX T Y∆ ∆= r r
r r

, (13) 

 
where the elements of 

XY
T r r  are populated by the scalar values given in (12). 

 

The covariance matrix of the vector Y
r

 is given by 
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where the index, i, is on a particular data set consisting of corresponding analysis-test pairs, N is the total number of 
data sets in the sample, and the analytical model is assumed to predict mean response.  When the analytical model 
contains bias-type error, as may be the case when a single FEM is used to simulate a range of test conditions, then 
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where Y∆µ r is the mean of the vector Y∆
r

. 

 

YYS r r  represents the generic modeling uncertainty inherent in analytical predictions of the response matrix, X, based 
on normalized comparisons of previous analysis and test data.  In order to evaluate the predictive accuracy of a new 
response prediction, Equation (13) is used, with the understanding that XYT r r  is evaluated with respect to the new 
model, i.e., the values of modU , modΣ , and modV  representing the modal parameters of the new model, rather than 
those of the models that have been correlated with previous test data.  Then 
 

 E T T
XX XY YY XYS X X T S T∆ ∆ = = 
r r r r rr r r

r r
. (16) 

 
 
 

DISCUSSION OF NUMERICAL EXAMPLE 
 
To illustrate these concepts the parameters of a complex, nonlinear system model were updated using available test 
data (Anderson, et al., 2000).  The physical scenario for the example is depicted in Figure 2a and consists of a three-
room, buried, reinforced concrete structure subjected to blast loading in the center room.  Experimental 
measurements included blast overpressures inside the room and accelerations of the two interior walls.  
Accelerations were integrated to obtain displacements. 
 
The corresponding model shown in Figure 2b is a quarter-symmetry, nonlinear finite element model.  This model 
consisted of approximately 80,000 continuum elements for the concrete and surrounding soil, and roughly 20,000 
structural beam elements for the steel reinforcement.  A cold joint near the bottom of the interior wall was explicitly 
modeled.  The material models contained dozens of parameters, many of which were candidates for estimation.  
Since the loading was distributed and available input measurements were few, an intermediate input model was 
required.  This model was a computational fluid dynamics model of the interior room pressure.  A preliminary 
validation of the input model was performed by a third party using available pressure data. 
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 (a) Physical scenario (without soil) (b) HFPB quarter-symmetry model 
 

Figure 2.  Example Problem 
 
The final estimation process began by using a corrected input model to generate a new model prediction.  This 
indicated that the cold joint friction had to be reduced to a lower level (0.05) so that the cold joint slip was 
accurately modeled.  The finite element model was then used to generate the new nominal prediction using the 
corrected inputs and cold joint friction.  Parameter estimates were generated using the two remaining parameters, the 
concrete strain rate enhancement and shear dilatancy.  The results of these efforts indicated that the originally 
estimated shear dilatancy value of 0.5 should not be revised even though the posterior correlation between the two 
parameters was high.  The final estimation attempt used only the strain rate enhancement, with shear dilatancy fixed 
at its nominal value. 
 
The final estimated value of the strain rate enhancement parameter was 0.0158.  The posterior variance estimate was 
two orders of magnitude less than the prior estimate.  The results of the final estimation process are illustrated in 
Figure 3.  Figure 3a compares the measured displacement history at the center of the wall with that predicted by the 
model with the original nominal, modified nominal, and revised value of the parameters.  Similar comparisons were 
made at other locations where data were available.  The results clearly indicated that the revised model not only 
matched the data very well in a mean square sense, but also captured the character of the data significantly better 
than the original nominal model.  Figure 3b shows the high quality of the parameter estimate.  One is therefore led to 
conclude that the estimated parameter values are likely to provide accurate predictions for future analyses using the 
same materials. 
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 (a) Time history comparison (b) Quality of the estimate 

 
Figure 3.  Results of the Final Estimation 

 
Figure 4 depicts the pre-update predictive accuracy of the model, i.e., the predictive accuracy of the updated model 
based on a covariance metric of total modeling uncertainty derived from a generic class of pre-update models.  The 
predicted and measured responses at the center of the wall are shown, along with 2σ±  uncertainty bands.  Note that 
the measured response falls completely within the uncertainty bands, as do the earlier response predictions based on 
the pre-update (nominal) models shown in Figure 3a. 
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Figure 4.  Post-Update Predictive Accuracy 
 
In work performed subsequent to the foregoing as reported in the original paper, an attempt was made to determine 
how much additional information at the component level, or other lower level of assembly, would be required to 
obtain uncorrelated or at least weakly correlated estimates of concrete strain rate enhancement or dynamic increase 
factor (DIF) and concrete shear dilatancy ( ω ).  A numerical experiment was conducted with the prior parameter 
covariance matrix and corresponding Fisher information matrix given in Equation (9).  The original coefficient of 
variation of the shear dilatancy of 30% was first reduced to 6.5% consistent with information content from 
reinforced concrete (RC) column test data provided by Karagozian & Case.  This increased the information index of 
the prior shear dilatancy estimate going into the system-level Bayesian update (based on the buried three-room RC 
structure) by a factor of 21.2.  Unfortunately, this was not enough to obtain uncorrelated estimates of strain rate 
enhancement and shear dilatancy;  the correlation coefficient was reduced from 0.983% to only 0.977%.   
 
To demonstrate what it would take to reduce the correlation coefficient of the final Bayesian estimate to less than 
50%, the information index of the prior estimate of shear dilatancy was artificially reduced progressively by an 
additional factor of 10, 100, and finally 1000.  The results of this experiment on the correlation coefficient between 
strain rate enhancement and shear dilatancy are shown in Figure 5.  Increasing the information content of the shear 
dilatancy estimate by a factor of 100 implies a reduction in the coefficient of variation by a factor of ten, i.e. an order 
of magnitude. 

 

Figure 5.  Variation of Correlation Coefficient, 12ρ , with Increasing Input Information Content. 
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Surface plots of the original (1×) and final (1000×) Bayesian objective functions are shown in Figure 6.  The strong 
negative correlation between the original estimates is apparent in Figure 6a, where the surface plot of the Bayesian 
objective function shows a long valley making an angle of approximately 45 degrees with the two parameter axes.  
The long valley in Figure 6a becomes a shallow dish in Figure 6b, with a distinct global minimum.  The major axis 
of the elliptical contour plots is shown in Figure 6b to have rotated so as to be nearly parallel with the DIF axis, 
indicating weak correlation between the two parameters. 
 
 

 
 
 (a) Nominal Information Content (b) Enhanced Information Content 

Figure 6.  Bayesian Objective Functions. 
 
 

SUMMARY 
 
The principal components-based nonlinear model validation methodology summarized in this paper provides a 
means of systematically comparing model predictions with available data and updating model parameters to increase 
the fidelity of response predictions.  This is a vast improvement over traditional ad hoc techniques.  Included in the 
methodology are tools for evaluating the statistical significance and consistency of the parameter estimates, and the 
predictive accuracy of the updated model.  These tools enable the analyst to confirm that the estimated parameter 
values are statistically meaningful, a prerequisite for true model improvement, and to quantify the degree of 
uncertainty associated with model simulations, based on structure-specific precision test data if replicate 
measurements are available, or historical data from generically similar structures and tests if they are not. 
 
Application of the methodology to the air blast response of a reinforced concrete wall demonstrated statistical 
parameter estimation and predictive accuracy assessment of a nonlinear HFPB model.  Principal components 
analysis was instrumental in generating the fast-running approximate model used for function approximation in the 
nonlinear Bayesian parameter estimation, and as a means for quantifying modeling uncertainty in the evaluation of 
predictive accuracy. 
 
Finally, the benefits of a hierarchical or multi-level parameter estimation strategy were demonstrated by extending 
the example problem presented in Anderson, et al, 2000.  The results were presented in terms of information 
content, and showed how much information would have been required from lower level component tests to 
significantly reduce the correlation of the estimated concrete strain rate enhancement and shear dilatancy parameters 
in the concrete constitutive model using system test data in a Bayesian update procedure. 
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