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ABSTRACT

Random geometric imperfections are natural in structures. The initial imperfections used to be

ignored in structure strength analysis and thus geometric-perfect models were used in most

case of numerical simulation. However, collapse of axially compressed square tubes is not

such a case. LS-DYNA is used to simulate the effects initial geometrical imperfection has on

square tube collapse. This study proves that dynamic progressive buckling of square box

columns is sensitive to initial geometrical imperfections. The simulation results show that

ideal square tubes tend to buckle in extensional mode, though is not likely to happen in

experimental studies. Previous theoretical analysis suggests, that from the view of energy

absorption extensional mode is a dynamic procedure of higher energy absorption

characteristics than that of each of symmetric and asymmetric mode of square tube in case of

high c/h. This phenomenon suggests that extensional mode is an unstable equilibrium that

will easily change to another equilibrium – symmetric mode. In a real world, geometrical

imperfection renders extensional mode almost unachievable for hollow square tubes. Three

kinds of imperfections: deflection of wall, thickness deviation and length of section side

unequal were discussed in this paper. The amplitude of imperfection was compared with the

geometry tolerance. Numerical simulations are then performed using LS-DYNA. Compared

with the experimental datum, deflection of wall is the main reason for the predominance of

symmetric mode of axially impacted hollow square tubes. Several characteristic values with

regard to the amplitude of wall deflection are discussed in particular. It is found that when the

amplitude of deflection is less than a certain critical valuecrλ , the initial impact force peak

value and the critical buckling load are almost the same and unchanged at a determined

impact velocity. When deflection exceeds the critical value, buckling take place in elastic area

and critical buckling force drops quickly. Energy absorbed before buckling also quickly drops

to near zero when deflection is considerably large.

INTRODUCTION

Thin-walled columns are typical energy absorbing units in frontal car crash. During the

impact event, such tubes crush progressively and dissipate energy. The dynamic buckling of

axially loaded square tubes has been examined in numerous experimental, theoretical and

numerical studies which have been undertaken in order to clarify various features of this

complex phenomenon. A representative diagram of axial crush of square tubes using a drop

hammer rig is shown in Figure 1. Progressive buckling may occur from top to bottom or

reverse.
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Figure 1. Crush of a Square Tube

In this paper, an overview of the progressive buckling mode of square tubes will be provided,

followed by three imperfection models and their calculation results. The particular column

considered has a length ofl=133.0mm, side widthc= 14.0
15.007.37 +

− mm and a wall thickness

h= 028.0
032.0152.1 +

− mm. The material is mild steel having Young’s modulusE=210GPa, yield

stress 275£½yσ GPa and a hardening modulusEt=1.0 GPa. A drop weight impact of the

column by a mass G=73.6Kg, traveling with a velocity0v =8.963m/s is studied when both

ends are subject to the same contact and friction condition. Experimental data for the square

tube was supplied by Abramowicz and Jones [1].

According to Wierzbicki’s theory, crushed shape of square tubes can be modeled by basic

folding elements, as shown in Figure 2. Abramowicz and Jones pointed out that dynamic

progressive buckling of square tubes could have four types of mode – symmetric mode,

asymmetric mode A, asymmetric mode B and extensional mode. Each layer of symmetric

mode consists of 4 type I elements. Each two layers of asymmetric mode A consists of 6 type

I elements and 2 type II elements. Each two layers of asymmetric mode B consists of 7 type I

elements and 1 type II element. And each layer of extensional mode consists of 4 type II

elements. Extensional mode of square tubes is similar to axisymmetric mode or concertina

mode of cylindrical tubes. As extensional energy is included in type II elements, the

extensional mode absorbs more energy than any other modes.
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Figure 2. Basic Collapse Elements of Dynamic Progressive Buckling of Square Tubes

(a) type I, (b) type II

Drop tests on square tubes has been performed excessively. In Abramowicz, Jones [1] and

Wierzbicki’s [2] among many others’ work, extensional mode wasn’t observed in

experiments. To the author’s knowledge, extensional mode of hollow squared metal tubes is

only reported once by Langseth and Hopperstad[3].

APPROACH

Square Tube Modeling and Discussion

The square tube is first modeled as an ideal straight square cross-sectioned hollow tube.

Numerical calculation is then performed. The result, as shown in Figure 3, is a typical

extensional mode that 4 sidewalls buckle outward or inward simultaneously. This is quite

different from experimental result, as shown in Figure 4, which is a typical symmetric mode.

0ms 5ms 10ms 15ms 20ms

Figure 3. Dynamic Progressive Mode of an Ideal Square Cross-Sectioned Tube
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Figure 4. Final Deformed Shape of Specimen Number I5 [1]

In a real world, manufacturing deviations are inevitable, and hence random geometrical

imperfections are quite natural in structures. As for a square tube, the length of each side of

cross-section could not be exactly the same and the wall thickness could fluctuate slightly

near the mean value. This may render the progressive buckling mode to change. For the

square tubes discussed in this paper, as we assume that both side length deviations and wall

thickness deviations are subject to “6σ criteria”, we get cσ =0.05mm and hσ =0.010mm.

To simplify the problem, we build two simple models to simulate side length and wall

thickness imperfection.

A rectangle section tube with the length of section side equalsc+ cσ and the width equalsc-

cσ is considered for the side length imperfection model, as shown in Figure 5.

Figure 5. The Imperfect Model for Side Length Deviation

The thickness of the wall thickness imperfect model is considered to be h+hσ . The

c- cσ

c+ cσ
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thicknesses of the opposite sides are equal, as shown in Figure 6. The central line of the wall

thickness imperfect model is a square.

Figure 6. The Imperfect Model for Wall Thickness Deviation

Numerical calculations are then performed. The simulation results of the side length

imperfection model which is mainly extensional mode, as shown in Figure 7, is similar to that

of ideal square tubes. There are 2.5 layers of extensional mode and 1.5 layers of symmetric

mode. Furthermore, even when the imperfection amplitude is assumed to be 10 times of real

cσ , i.e. 0.5mm, the simulation result is almost the same.

The simulation result of wall thickness imperfection model does not change a lot. There are 3

layers of extensional mode and 1 layer of symmetric mode, as shown in Figure 8.

c

c

h+ hσ h+ hσ
h- hσ

h- hσ
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Figure 7. Dynamic progressive buckling of section length imperfection square tube

0ms 5ms 10ms 15ms 20ms

Figure 8. Dynamic Progressive Mode of Imperfect Wall Thickness Model

None of the above models includes wall unflatness. The sidewall may have an initial

deflection and it may not perpendicular to the impact end. The initial deflection can be

described as following progression:
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The initial deflection is assumed to have the save wave shape as the final buckled shape. The

buckling mode number equals five based on the experimental observation. Considerfi<<f5

(i=1,2,3,4,6,7,….) and two and a half waves over the full length of tube, the unflatness
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function can be written as

( )Lyy w πλ 5sin0 ±= (2)

where, wλ is the amplitude of the initial deflection,L is the length of the tube, ± stands for

outward or inward deflection.

The imperfection model is shown in Figure 9, where

( )Ltg w /51 πλθ −±= (3)

Figure 9. Imperfection Model for Initial Deflection of Sidewall of Square Tube

The initial imperfections are assumed to be sufficiently small in order not to affect the

deformed shape. Thus, it is assumed that hw 01.0=λ , whereh is the column thickness. For

this particular tube, wλ =0.01h≈ 0.01mm. This imperfect model is calculated and the

simulation result is shown in Figure 10.
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Figure 10. Crushing Mode of the Wall Deflection Model of Square Tube

Compared Figure 10 with Figure 4, good agreement can be found. For all the four numerical

models, similar finite element meshes were build in order not to affect the calculated result.

The load-displacement curves of the above four models are shown in Figure 11 and some

important characters are listed in table 1.
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Figure 11. Loading-Shortening Curves of the Above Four Square Tube Models

Table 1. Comparison of Four Square Tubes’ Load-Shortening Behavior

Models
Mean Crushing

Force
Final Crushed

Distance
Error(%)

Crushing
Mode*

Ideal sectioned 29.6201 97.8898 -8.8549 E

Imperfect section
length

28.4970 101.524 -5.4711 E



9-40

Imperfect wall
thickness

29.1565 99.4696 -7.3840 E->S

Wall deflection 26.6383 108.146 0.6946 S

Experimental result 27.5 107.4 / S

* Note: ”E” - Extensional mode, ”S” – Symmetric mode, “E->S” – Transition mode from

extensional mode to symmetric mode.

According to Wierzbicki’s theory, Abramowicz and Jones found that extensional mode is of

higher energy absorbing character than either symmetric or asymmetric mode when c/h is

large. Dimensionless mean crushing forcesPm for extensional mode and symmetric mode are

respectively written as equation (4) and (5) and are shown in Figure 12.

( ) 39.10/83.36 2/1

0

+= hc
M

P E
m (4)

( ) 3/1

0

/22.52 hc
M

P S
m = (5)

where, 4/2
00 hM σ= , c is the length of side andh is wall thickness.
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Figure 12. Relationship Between Dimensionless Mean Crushing Load and c/h

From Figure 12, one gets:

•= When 0<c/h<3.5, extensional mode may have lower energy absorbing character

theoretically. In such case, the hollow square tube is nearly a solid bar. Overall bending

should be predominant buckling mode.
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•= When c/h>3.5, extensional mode has higher energy absorbing character. In most case for

square tubes, c/h is above 10. For the particular tube discussed above, c/h=32. According

to the lowest energy principle, extensional mode is not likely to happen since geometrical

imperfection and perturbation are omnipresent.

DISCUSSION OF RESULTS

Deflection Effects

Effects of wall deflection on initial buckling and progressive buckling will be discussed in the

following section. In the pervious model with deflection, we take liberty to quantify the

deflection amplitude as 0.01h, but in a real world it is hard to quantify the amplitude. Many

characteristic values for the crushing process of the square tube is a function in respect to the

amplitude of imperfection. The deflection model shown in Figure 9 will be applied to

calculate the characteristic value of square tube collapse, whilewλ is the only variant.

According to the stress wave propagation theory, the first impact force peak should be:

vC00ρσ = (6)

where, ρ is the density of the material,C0 is the sonic velocity of the material andv is the

impact velocity. While the impact velocity is over the yield velocity, plastic wave will be

propagated in the tube.

A series of calculations on different amplitude are performed. Figure 13 shows the

relationship between the initial impact force peak and the amplitude of the deflection. Figure

14 shows the relationship between the initial impact force peak time and the amplitude of the

deflection.
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Figure 13. Relationship Between the Initial Impact Force Peak and the Amplitude
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Figure 14. Relationship Between the Initial Force Peak Time and the Amplitude

Figure 13 and Figure 14 indicate that when the amplitude is less than a critical value

( 2.0<wλ ), the axial force and its time are nearly the same. That means the first force peak

is determined by the wave propagation. While the amplitude is relatively large ( 2.0≥wλ ),

the initial axial force peak drops quickly when the amplitude increases and equation (6) is no

longer valid for such kind of tubes.

The results of critical buckling force and initial buckling time are shown in Figure 15 and

Figure 16. It appears that the critical buckling force decreases slightly when amplitude is

under 0.2mm, when amplitude is above 0.2mm, critical buckling force drops quickly. The

initial buckling time begins to drop at 1e-3mm. When amplitude is above 0.2mm, it seems the

buckling take place at the impact time. This means the square tube buckles in elastic range
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even when the impact velocity is low. Now, a critical value for this particular tube can be

determined to be 0.2mm.
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Figure 15. Relationship Between the Critical Buckling Force and the Amplitude
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Figure 16. Relationship Between the Initial Buckling Time and the Amplitude

From Figure 15 and Figure 16, the energy absorbed before the buckling takes place can be

determined, as shown in Figure 17.
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Figure 17. Relationship Between the Energy Absorbed Before Buckling and the Amplitude

The initial axial force peak and the critical buckling have only theoretical meaning for car

crash analysis, because the energy absorbed in this period is relatively small. The mean

crushing force is important for energy absorbing. To make the problem comparable, the first

80mm crushing distance is taken into consider. The result is shown in Figure 18.

Figure 18. Relationship Between the Mean Crashing Force and the Amplitude

It is interesting to note the transition from the extensional collapse mode to symmetric mode

as the random imperfection amplitude increases. The whole range of amplitude can be divide

into three sub-ranges: the extensional mode range, the symmetric mode range and a transition

range.

Range A

The mean crushing force is about the same (26KN). The extensional mode is predominant.

The extensional layers of final deformed shape varies from 3 to 5.
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Range B

The mean crushing force is about 21 KN and tends to decline. The crushing mode is mainly

symmetric mode except the first layer is extensional mode.

Range C

The mean crushing force is even low. It is around 17KN. The crushing mode is symmetric

mode only.

The theoretical analysis pointed out that symmetric mode absorbs more energy than

extensional mode. When the amplitude of deflection increases, symmetric mode is

predominant. Hence, the mean crushing force drops simultaneously. It should be point out

that the amplitude of wall deflection should be very small to obtain a extensional mode. For

this particular tube, the amplitude should less than 1mµ . Also, Figure 18 indicates that in

range B and C the mean crushing force drops when the amplitude increases, while

progressive buckling mode does not change.

CONCLUSION

The dynamic progressive buckling is sensitive to the geometrical imperfections. Experimental

studies shows symmetric mode is predominant in square tube crushing. The geometrical

imperfection is introduced to the numerical model for square tubes in this paper. The variant

includes the imperfection of the length of the side of the square cross-section, the

imperfection of the wall thickness and the imperfection of the wall deflection. The ideal

square tubes tend to crush in extensional mode, while imperfect ones tend to symmetric mode

or transitional mode. The imperfection is compared with manufacturing deviation. The

calculation results show the length of the side deviation and wall thickness has only limited

affects on crushing mode, while the wall deflection has great influence on square tube

crushing mode. Some characteristic values with respect to the amplitude of wall deflection for

dynamic progressive buckling are achieved. A critical value of the amplitude is emerged.

When the amplitude is less than this value, the buckling force doesn’t changes a lot. When the

amplitude is above this value, the buckling force drops quickly.
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