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ABSTRACT

A new homogenization procedure for Finite Element (FE) analysis of
sandwich shells was recently developed and presented by the authors. To
the authors’ knowledge all present FE approaches to sandwich structures are
incorporated into the FE formulation on the element formulation level.
Unlike other formulations the present approach works on the constitutive
level. A homogenization of the sandwich shell is performed at each call of
the corresponding constitutive subroutine. Thus the sandwich nature of the
problem is hidden from the main FE program. As a consequence there is no
need to develop a new shell element formulation, but instead all available
homogeneous shell elements in the utilized FE code can be used for the
analysis of sandwich shells. This would provide versatility of the FE
analysis and potentials to trade off between the level of accuracy and
computational efficiency by using more accurate or simpler shell elements.
Furthermore, the sandwich homogenization procedure (SHOP) can be easily
coupled with a composite homogenization model to enable analysis of
sandwich shells with composite faces. To validate the present approach and
check its accuracy, efficiency and overall performance it is implemented in
a finite element package and combined with existing first order shear
deformable shell elements for homogeneous materials. Results are obtained
and herein presented for problems previously investigated experimentally
and by different theoretical and numerical techniques. The presented results
show good agreement with published results from far more complicated and
computationally intensive analyses, which builds confidence in the approach
and motives its future elaboration and development.

Keywords: sandwich shells, finite element analysis, sandwich
homogenization, shell elements, composite faces, plate deformations

INTRODUCTION

As the technological, structural, thermal, acoustic, durability, and other requirements for shell
structures increase so does the application of sandwich panels in land, marine, space vehicles,
civil structures etc. While in some cases the design requirements could still be satisfied by
using conventional construction materials like metals and the application of sandwich shells is
simply a matter of choice, recently there are more and more areas where conventional
materials simply won’t do the job. Structural, thermal etc. characteristics have to be tailored
and combined, and therefore, in such cases the utilization of sandwich constructions is
inevitable. Their important advantages like high weight to stiffness and weight to strength
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ratios and durability would have increased their application even more if it were not for the
technological difficulties related to their production, high cost per unit volume, and the
uncertainty in predicting their behavior. The structural complexity of sandwich shells makes
standard analysis methods developed for homogeneous shells inapplicable and the results
acquired with them are usually inaccurate and unreliable. Therefore, major efforts are devoted
to developing analysis tools capable of adequately predicting the behavior of sandwich shells.
A significant part of these efforts is dedicated to the utilization of the FE analysis for
predicting the behavior of sandwich shells.

The basic difference between sandwich and homogeneous shells is the significant
contribution of the transverse shear to the shell deformation. Furthermore, some derivatives of
the displacement functions are discontinuous through the shell thickness. All this makes
classic shell theories based on Love-Kirchhoff hypotheses inapplicable for sandwich shell
analysis. In the FE formulation for shell structures the utilized shell theory is implemented on
the element formulation level. Therefore, it is not surprising that most of the efforts in
applying the FE method for sandwich shells investigation are concentrated on the element
formulation level. Probably the easiest approach is just to use 3-D finite elements and
separately discretize the different sandwich layers – faces and core. In most cases this will
provide good accuracy but results in a very fine FE mesh and is only applicable for small
models and simple problems. In an effort to improve the analysis efficiency most of the
developed approaches rely on some a priori assumed through thickness distribution for the
unknowns: displacements, strains and stresses. Thus, a reduction in the problem
dimensionality is done, which is supposed to result in a significant decrease in the number of
degrees of freedom of the system. In this process the usual controversy in engineering
analysis appears, having to trade off between efficiency and accuracy. The simplest
approaches are usually not accurate enough and the accurate ones are not efficient enough to
be applicable for real world problems.

First Order Shear Deformable Theories
The simplest approaches are based on the single layer assumption: the shell is assumed made
of an equivalent single homogeneous layer. In this theory the discontinuities of displacement
derivatives at the face-core interfaces are neglected. These discontinuities are taken into
account by the more complex layered approaches. Most of the earliest developed approaches
to sandwich shell analysis are based on the Reissner-Mindlin (see Reissner1 and Mindlin2)
type first order shear deformation theories and utilize the single layer assumption. These
theories assume that sections, which are initially plane and perpendicular to the reference
surface, remain plane but are not necessarily normal to the reference surface after the loading
is applied. Hrabok and Hrudy3, Ha4, Burton and Noor5, Zenkert6, and the extensive review
by Noor et al7 have described and referenced many of these theories. The major disadvantage
of the first order theories is that they cannot correctly represent the through thickness
distribution of the transverse shear deformation. As a result the traction conditions at the shell
surfaces are violated and as the shell thickness decreases these theories tend to experience
shear locking. They require shear correction coefficients to correct the corresponding strain
energy terms and these coefficients are not always available or easy to determine.

Higher Order Theories
To overcome some of the disadvantages of the first order theories the through thickness
distributions of the displacement functions are assumed to be higher order polynomials of the
thickness coordinate. Quadratic, cubic, or higher polynomials have been assumed by different
authors. Higher order theories have been systematically described and referenced by Pandya
and Kant8, Reddy9, Ha4, and Noor et al7. The basic disadvantage of the higher order theories
is that most of them require C1 continuity of the displacements. To overcome this Kant and
Kommineni10 developed a C0 formulation of a higher order shear deformation theory.
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Discrete Layer and Zig-Zag Theories
To overcome the violation of the strain and stress discontinuities through the shell thickness
of the first and higher order single layer theories discrete layer and zig-zag theories have been
developed. The discrete layer theories,11–15 assume that the sandwich shell is composed of
layers of different materials with different distribution of the displacements in the separate
layers. This approach is applied both for composite and sandwich shells. For sandwich shells
the faces and core are usually defined as separate layers. These theories usually result in quite
accurate representation of the sandwich shell behavior but a major disadvantage is that they
require a large number of degrees of freedom to be able to represent the through thickness
displacement functions. This significantly affects the computational efficiency making them
suitable only for small problems. Zig-zag theories,16–19 usually require a smaller number of
degrees of freedom but still give a good representation of the continuity and traction
conditions at layer interfaces. Some of these theories,18, 19are based on C0 elements and seem
efficient for layered composite and sandwich shells.

The Sandwich Homogenization Procedure (SHOP)
The aim of the present approach is to use the simplicity of the single layer approach and yet
keep the layered nature of the shell. Within the FE analysis this is done by performing a
homogenization of the sandwich layers on the constitutive level. Stresses in the faces and
core, which correspond to the incoming strains, are computed, homogenized and returned to
the FE subroutine for calculation of internal forces. Thus, the sandwich nature of the shell is
only manifested on the material constitutive level. It is hidden from the main FE program,
which means that practically no changes to the existing code are necessary outside of the shell
through thickness integration loop.

By using the single layer approach the SHOP inherits its disadvantage: representing each of
the through thickness displacements and their derivatives by a single continuous function with
continuous derivatives. In the actual sandwich shell the displacements themselves are
continuous but some of their derivatives are discontinuous, which results in some
discontinuities in the strain functions. For the continuous displacements and strains a
formulation involving a higher order single layer theory will probably give a sufficiently
accurate approximation of the corresponding displacements and strains. Using first order shell
elements, the present implementation of the SHOP yields very good results for the normal
strains in sections where no excessive warping is observed. To deal with the discontinuities in
the transverse shear strains, the present procedure changes the strain distribution through the
thickness. This change is based on the shear stresses interface traction conditions, and it
results in a more realistic transverse strain distribution functions. As seen from the presented
graphs, the results produced by the SHOP are very reasonable.

THE SHOP AND ITS PRESENT IMPLEMENTATION

Description of the SHOP
The proposed SHOP performs the standard task of any finite element material model:
receiving the strain increments in the equivalentmaterial it calculates the corresponding stress
increments. For this homogenization procedure to work it is necessary to process all
integration points throughout a given cross section simultaneously. This is due to the fact that
the sandwich nature of the problem is hidden from the main program and is only considered
within the homogenization procedure. Based on assumptions relating the equivalent
homogeneous shell and the sandwich shell, the stress increments in the sandwich and in the
equivalent material cross section are calculated from the strain increment distribution in the
equivalent material cross section. The assumptions that the SHOP is based upon are:
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♦= The strain increment distribution functions throughout the cross-section of the equivalent
material are known.

♦= The faces and core layers of the sandwich shell and the equivalent shell material are
assumed homogeneous and orthotropic.

♦= The “equivalence” between the fictitious equivalent shell and the sandwich shell is based
on assumed equalities of the cross-sectional resultant forces and moments, and the strain
energy for the cross section;

♦= Although the proposed material model can be developed for unsymmetrical sandwich
shells, in the present study a symmetric sandwich shell is assumed. Both faces have the
same thickness,hf, and are of the same material. The thickness of the core is denoted with
hc.

The formulation of the proposed homogenization procedure is rather simple. It receives from
the finite element main program the values of the strain increments at the integration points of
the current cross section. Knowing the shell formulation that the current shell element is
based upon, the strain increment distribution functions throughout the shell cross section can
be determined. Assuming the same distribution and the same values for the strains in the
sandwich shell cross section and based on the known material constitutive relations, the stress
distribution and corresponding values in the faces and core layers can be calculated. The
resultant forces and moments for the cross section can also be calculated.Assuming that the
stress increments in the equivalent material produce the same values for the resultant forces
and moments, they can be expressed through the strain increment distribution functions and
the unknown constitutive relation constants of the equivalent material. From these
expressions the unknown constitutive constants of the equivalent material can be determined
and with them the stress increments in the equivalent material integration points can be
calculated. This approach should be able to work with single layer shell theories of any order.

Implementation of the SHOP
In the present investigation the SHOP is incorporated in an existing FE package and is
combined with standard first order shell elements. The linear strain and stress distribution
through the shell thickness allows for some simplifications in the formulation: instead of the
equivalent material constitutive constants the equivalent material stresses in the integration
points can be directly calculated. Furthermore, the constant transverse shear assumption
allows the transverse shear strain distribution in the sandwich shell to be changed satisfying
the shear stress interface requirements. The basic homogenization assumptions of the SHOP
involve equalities between the cross-sectional resultant forces and moments for the sandwich
shell and the equivalent homogeneous shell. Equality is assumed between the following
resultant forces and moments:

Nxx – the resultant force of stress incrementsdσxx for the cross-section with
normal thex-axis;

Nyy – the resultant force of stress incrementsdσyy for the cross-section with
normal they-axis;

Nxy= Nyx – the resultant shear force of stress incrementsdσxy = dσyx in the shell plane;
Mxx – the resultant moment of the stress incrementsdσxx about they-axis;
Myy – the resultant moment of the stress incrementsdσyy about thex-axis;
Mxy= Myx– the resultant moment of the stress incrementsdσxy about thex-axis, or of

dσyx about they-axis.

The developed procedure utilizes the [Hughes et al, 20] degenerate shell element. Three
integration points through the thickness are considered. One at the mid-surface and two above
and below the mid surface. Faces and core materials are assumed to be orthotropic. The
incremental strains are related to the incremental stresses for both faces and core by the
compliance and stiffness matrices given by equations (1 and 2).
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where k is cf , for face or core, respectively
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where k is ecf ,, for face, core, or equivalent material respectively.

The nonlinear finite element code DYNA3D is considered for implementation of the present
formulation. The strains at the three integration points are obtained after kinematic updates.
These strains are cascaded to the faces and core to calculate the stresses. Once stresses in
faces and core are calculated, equivalence of moment and stress resultants is invoked to
obtain the stresses of the equivalent shell at the three integration points. These stresses are
then used to calculate the internal forces in the shell element and to subsequently obtain
strains at the next increment. Membrane and bending strains at the three integration points are
used to calculate stress and moment resultants. The Hughes shell element assumes that the
transverse normal stress vanishes (equation 3), however, the formulation allows for non-zero
transverse normal strain at the nodal points. The transverse normal strain in the faces and core
due to membrane strains are given by the following equations:
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Stresses Due to Stretching:
Label the integration point at the mid-surface as integration point one and the integration
points above and below the mid-surface as integration points 2 and 3 respectively as depicted
by Figure (1). At the mid-surface integration point (z=0) the membrane strains are given by
the following equations:
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where )1(ie are the strains at mid-section integration point, and i=1, 2, and 4 respectively.

Due to these strains, the membrane strains in the faces and core are calculated as follows:
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The stress resultants due to the membrane stretching are calculated by the following
equations:

)0()0(2

)0()0(2

)0()0(2

c
xyc

f
xyfxy

c
yyc

f
yyfyy

c
xxc

f
xxfxx

dhdhN

dhdhN

dhdhN

σσ

σσ

σσ

+=

+=

+=

(8)

where cf hh , is the thickness of the faces and core respectively.

Stresses Due to Bending:

Stresses due to bending deformation are calculated from the increments of the cross-section
rotations given by the following equations:
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where :)2(ie are strains at second integration point above mid-surface and i=1, 2, and 4

respectively and :eta is the distance between the integration points as depicted in Figure (2).
Once the incremental cross-section rotations are obtained, the incremental strains due to the
bending deformation are calculated in the faces and core. The incremental stresses due to
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bending are calculated using the constitutive equations of the face and core respectively.
Subsequently the moment resultants in both faces and core are obtained. The corresponding
equations are as follows:
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The incremental bending strains in the face due to cross-section rotations are:
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The incremental bending stresses due to cross-section rotations are:
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Therefore the moment resultants in faces can be obtained from the following equations:
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In the above equations cft hhh += 2 .

Coreat
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The incremental bending strains in the core due to cross-section rotations are:
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The incremental bending stresses due to cross-section rotations are:
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Therefore the moment resultants in the core can be obtained from the following equations:

�
�

�
�
�

�−=

�
�

�
�
�

�−=

�
�

�
�
�

�−=

26

26

26

2

2

2

cc
xy

cc
xy

cc
yy

cc
yy

cc
xx

cc
xx

h
d

h
M

h
d

h
M

h
d

h
M

σ

σ

σ

(15)

The total moment resultants due to bending deformation are obtained as follows:
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Up to this point what we have is the stress and moment resultants in the sandwich shell
materials. As stated before, the bases of the formulation is the equivalence of the stress and
moment resultants of the sandwich shell and the equivalent homogenized shell. Therefore, the
in-plane stresses in the equivalent homogenized shell can be written in the following form at
the three integration points of the section:
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At the mid-surface integration point:
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At the integration point above the mid-surface
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At the integration point below the mid-surface
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where )( etad eb
ij −σ are contributions of the moment resultants and are given by the

following:
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The above equations (20) are obtained with the help of Figure (2), and the identity formula
for similar triangles. In this manner we have all the in-plane stresses in the equivalent

homogenized shell. The normal transverse stress is 0=e
zzdσ . The transverse shear stresses

are obtained from the condition of continuity given by the following equations:
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The transverse shear strain in the equivalent homogenized shell is assumed to be the weighted
average of the strains in the faces and core as follows:
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Using the above equations (21 and 22), the transverse shear stresses in the equivalent
homogenized shell can be obtained as follows:
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Based on the above-described algorithm, a new sandwichmaterial model is defined within the
DYNA3D nonlinear FE code. The only change that had to be made outside thematerial
model definition is the way the through thickness integration is performed in the Hughes shell
element. Instead of performing the integration on a point-wise basis, the strains for all
integration points together with the integration pointsz-coordinates have to be gathered and
passed to the sandwich material model. An important advantage of the approach is that the
constitutive sandwich material subroutine is called only once for the whole cross section,
while for a homogeneous shell the corresponding constitutive subroutine has to be called once
for each through thickness integration point.

VALIDATION OF THE SOLUTION METHODOLOGY

To assess the performance of the developed methodology, two models are investigated. 3-D
FE numerical solutions can be obtained for the first model and experimental data is available
for the second model. The first model considered is a sandwich plate with Aluminum faces
and Foam core. The sandwich plate is tested by Bau-Madsen [5] for several different lateral
pressures (see Figure 3). A convergent 2-D finite element mesh of the plate is development
and the current formulation is employed for the simulation. Figure (4) depicts the predicted
center deflection, for several lateral pressures, for two boundary conditions. An excellent
agreement with the experimental data is obtained for both boundary conditions. The second
model considered is a symmetric sandwich beam; 300 mm in length, 5 mm in width, and
consisting of 1 mm Aluminum faces and 16 mm PVC Foam core. Material constants for the
model are reported in Table (1). Due to symmetry, only one half the beam is modeled. The
beam is modeled both by 3-D brick elements and the developed sandwich shell element as
depicted by Figures (5) and (6) respectively. The 3-D model consists of two elements for each
face and four elements for the core through the thickness. Thirty elements are considered
along the beam length defining a mesh of 30x8x1 brick elements. The sandwich shell is
modeled by 30x1 mesh. The utilized mesh in here is obtained after mesh convergent studies.
The implementation of the methodology into the explicit dynamic finite element code
DYNA3D requires definition of the density of the sandwich shell. The density of the
sandwich shell is assumed to be the weighted average of the densities of the core and faces as
given by the following equation:

t
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hh ρρ
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2
(24)

where cfe ρρρ ,, are the densities for the equivalent shell, faces, and core respectively.

Figure (7) depicts the FE model of the 3-D sandwich beam with coordinate axes, direction of
load, and stations at which strains are extracted for comparison. The commercial explicit code
LSDYNA [6,7] and the implicit code ABAQUS are used to assess the accuracy of the
developed methodology.
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The center deflection of the 3-D sandwich beam is 8.4 mm as compared to a predicted value
of 8.5 mm utilizing the current formulation. The lateral pressure of 1.5 N/mm2 is applied to

the sandwich beam. Results for the normal strains,xxε , are presented in Figures (8), (9), and

(10) at different locations of the sandwich beam. In the central region of the beam where
warping is insignificant, the present approach yields excellent results as compared with the 3-
D models. As warping become significant, the strain distributions using the presented
approach become less accurate due to the constraint of linear in-plane strain distribution of
the utilized Mindlin theory in the shell formulation. In addition, the clamped boundary
condition in the shell elements is not the same as that of the 3-D elements. Figures (11) and

(12) depict the distribution of the transverse shear strain,xzε , at two different locations of the

beam. In here, a very good agreement of the transverse shear strain between the developed

formulation and the 3-D model is obtained. Figure (13) depicts the normal stress,xxσ , at

center of beam. Good agreement is also obtained for the stress.

Table 1. Properties for face and core

E11

GPa

E22

GPa

E33

GPa

ν12 ν31 ν32 G12

GPa

G31

GPa

G32

GPa

ρ
kg/m3

Face:

Alum
73.4 73.4 73.4 0.32 0.32 0.32 27.8 27.8 27.8 2700

Core:

PVC

Foam

0.286 0.286 0.286 0.3 0.3 0.3 0.11 0.11 0.11 250

Figure 1. Integration points through the thickness of the shell
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Figure 2. Equivalent stress at the surface and integration point #2 of the shell

Figure 3. Sandwich plate geometry from experimental testing of Bau-Madsen8
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Figure. 4. Displacement, w, at midpoint of the sandwich plate for lateral pressure q = 0÷150
kPa, for clamped and simply supported plate (models of8)
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Figure 5. Brick FE model of one half of the structure

Figure 6. Shell FE model of one half of the structure
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Figure 7. Geometry and locations of sections for strain extraction
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Figure 8. Normal Strains,εxx, in the Midsection (x = 147.5 mm)
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Figure 9. Normal Strains,εxx, at x = 52.5 mm
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Figure 10. Normal Strains,εxx, at x = 97.5 mm
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Figure 11. Shear Strains,εxz, at x = 52.5 mm
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Figure 13. Normal stress,σxx, at x = 147.5 mm

CONCLUSIONS

The sandwich homogenization procedure herein presented can be easily and efficiently
implemented into standard FE codes. The procedure can be combined with existing shell
elements for homogeneous shells to produce a powerful analysis tool able to analyze both
simple and complicated sandwich structures. The present implementation of the SHOP
involves the simplest shear deformable elements yet it provides excellent results for the
transverse shear strains and stresses, the normal strains and stresses in regions without
excessive warping, and the overall shell behavior. The computational efficiency of the present
analysis is comparable with the most efficient formulations for homogeneous orthotropic
shells. The general approach that the SHOP is based upon could have great potential when
combined with a higher order shell formulation.
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