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ABSTRACT
The present work concentrates on the development of correct representation of
the transverse shear strains and stresses in Mindlin type displacement based
shell finite elements. The formulation utilizes the robust standard first order
shear deformation shell finite element for implementation of the proposed
representation of the transverse shear stresses and strains. In this manner the
need for the shear correction factor is eliminated. In addition, modification to
any existing shell finite element for the correct representation of transverse
shear quantities is minimal. Some modifications to correct Mindlin type
elements are presented in the literature. These maodifications correct the
distribution of the transverse shear stresses only and use the constant transverse
shear strains through the thickness. As compared to the above, the present
formulation uses the correct distribution and is consistent for both transverse
shear stresses as well as transverse shear strains.

Keyword: shell finite element, transverse shear stresses and strains, higher
order shell theory, shear correction factor.

INTRODUCTION

One of the major disadvantages of the first order shear deformation shell theories is that
although they account for the transverse shear they cannot correctly represent its through-
thickness distributioh Nevertheless, their ability to accurately predict the overall shell
behavior and their relative simplicity makes them the basis for most shell elements utilized in
the finite element codes nowadays. The first order shell elements are usually capable of also
producing good results for the in-plane strain and stress distribution but their formulation
results in constant transverse shear strains as opposed to the realistic parabolic distribution.
As a result the traction conditions at the shell surfaces are violated. They also require shear
correction coefficients to correct the corresponding strain energy terms and these coefficients
are problem dependent and are not always easy to determine. Numerous efforts have been
made to overcome this disadvantage of the first order formulation most of which result in a
higher order shear deformation theory (e.g. see Pandya and’,KReddy’, Ha*, Noor et

al.”). An efficient remedy for the transverse shear inconsistency is implemented in the finite
element codes ABAQUS and MSC/NASTRAN and described in Chapter 3.6%8anf
Chapter 6.5 of. It is based on the stress and moment equilibrium equations and results in a
parabolic through thickness distribution for the transverse shear stresses. However, in this
formulation the transverse shear strains are still constant through the shell thickness and
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therefore in its implementation the shear correction factors are still required in the strain
energy terms.

The herein-presented approach for treating the transverse shear strains and stresses in
homogeneous shells results in parabolic distribution for both strains and stresses and,
therefore, it eliminates the need of any shear correction factors. It requires only minor
changes in the first order shear deformation formulation and totally preserves its efficiency. It

is applicable to any displacement-based formulation and extremely easy to implement in any
first order shell finite element.

THEORETICAL FORMULATION

The present formulation starts with the third order displacement field

u=u, +6,z+¢ z° +y z°

V:VO _exz_ ¢x22 _‘//ng

W=W, ’ L
whereu andv are the in-plane, and is the transverse displacement component. igre,,
andwy are the reference surface linear displacements along the coordinate, gxesidz
respectively8;, i = 1,2 are the reference surface rotations, @nandy; are the higher order

terms in the displacement polynomial expansois. the coordinate along theaxis normal
to the shell reference surface.

Using the strain-displacement relations
1 aui auj
gij = " 4+__ 2
2{0x; 0%
the components of the strain vector corresponding to the displacement field (1) are:
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Vanishing of the transverse shear stresses at the top and bottom shell surfaces,
Uyz(i %) = sz(i %) = 0, makes the corresponding strains there zero, which yields:
¢,=¢,=0

_afowy ) . 4(ow
3wx_h2(6y exj' 3l'lJy hz(ax +ey}' (4)
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Hereh is the shell thickness. Using these relationships the displacement field, Eq. (1), and the
strain expressions, Eq. (3), simplify into:

u=u,+6,z+y,z

vy, -6z-¢.2 (5)

W =W,
and
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Let us now assume that the first two terms in #ee,, ande,, expressions in Eq. (6)
represent the through-thickness distribution of the in-plane strains with enough accuracy. This
means that we can neglect the contribution of the derivativas ahd y, with respect toc

andy and simplify the strain relations as follow:

au, N 06

g =—""2+—1z
ox  Ox
£ :%—aexz
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These expressions are identical to the strain expressions from the first order shear
deformation displacement field

u=u,+6,z
v=y,-6,z, (8)
W =W,
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except for the transverse strain expressions. They are different from the usual relations,
2, = M _ 0, 2¢,= %V)\:O +6,, and result in parabolic through-thickness distribution

for the transverse shear strains.

The strain expressions, Eq. (7), and their corresponding displacement field, Eq. (8), define the
present formulation, which is actually a first order shear deformation shell formulation with
corrected transverse shear. It is evident that it results in a parabolic distribution of the
transverse shear strains and satisfies the zero transverse shear stresses requirements at the
shell surfaces. As seen, it also requires insignificant modifications to be implemented in
existing displacement based first order shell elements.

Now, let us compare the above forhation with the approach ifhand’. The latter approach
is based on the equilibrium equations:

or,, 00 oM
4+ ——X=0;, V + x=0. 9)
0z  0OX ox
The in-plane normal stressy, can be expressed through the bending morivent

oo, _12z E@MX _ 1Nz

— M X .
g, = Z, 3 3
I 0X h®  ox h
In the last expression it is assumed that the shell thickness does not vary (or vary slowly) with
position along the shell. Note that in the herein-presented formulation this assumption is not
required.

(10)

Substituting the second equation in (10) into the first relation in (9) and integrating yields

6V,
—X7. (11)

sz:Cl_ h

h v,
At Zz= iE , Te=0and Cl = E . Then for the transverse shear stress we get

I, = 2;* [1—;12 zzj : (12)

Comparing this expression with the last relation in (7) we see that they are very similar. We

3V, . .
know that for a homogeneous shegﬁ gives the maximum value of the transverse shear

ow,
stressty,. Obviously a—°+9y has similar meaning for the transverse shear strajn 2
X

Therefore, it is expected that both approaches would give the same results for the transverse
shear stresses. Note that if the transverse straifisaind ’ are calculated from the strain—
displacement relations, Eg. (2), there will be an inconsistency between the transverse strains
and the transverse stresses, and the approach will still require a shear correction factor in the
strain energy expression. This is not the case with the present formulation.

EXAMPLE PROBLEMS

To illustrate the performance of the present formulation and compare it with results from
other approaches it is implemented in the explicit finite element code DYNA3D. The
formulation of the Belytschko-Lin-Tsdyshell element is changed to reflect the present
approach. Two models are investigated and the results acquired using the present approach



are compared with results from other solution approaches and with previously published
results.

First, a simple model is constructed and solved: a strip of lengthn&d0width 5 mm and

height 2mmis clamped at both ends and subjected to uniform distributed vertical load of
magnitude 1&kPa The material is steel wittE = 207 GPa v = 0.32, and densityp =
7.83x10° kg/n?. Results for transverse shear stress and strain, and normal stress are presented
in Figures 1-3 corresponding to two different sections of the strip considered. Stresses and
strains are collected at section with coordinate x=2.5 mm and 52.5 mm. Figure 1 presents
predictions for the transverse shear stresses of the present approach. The predictions are
compared with results obtained from the closed form elasticity solution, results from the finite
element code ABAQUS based on the approach descrifecimd results from the original

first order shear deformable formulatioR@SDT). As seen the FOSDT results in constant
transverse shear stresses through the thickness and the rest of the results coincide very well
with each other. Figure 2 presents the results for the transverse shear gjaftssseen both
ABAQUS and the FOSDT result in constant transverse shear strains through the thickness,
which are incorrect. However, the transverse shear strains predicted with the present approach
agree very well with that obtained from the elasticity solution. The difference between the
values from ABAQUS and FOSDT is due to the fact that a shear correction factor of 1 is used
in the FOSDT calclations while it is determined automatically in ABAQUS. From Figures 1

and 2 the inconsistency between the distribution of transverse shear stresses and strains can be
observed (parabolic for stresses, however, linear for strains). Finally, Figure 3 shows the in-
plane normal stresses,, distribution at 3 different sections along the strip. As seen the
corrected transverse shear does not influence the in-plane normal strains, which provide
further confidence in the developed corrections.

Second, a model investigating the axial buckling of a cylindrical composite shell is taken
from the study of Anastasiadis et &lResults are acquired using three different approaches: a
standard approach for layered shells based on constant transverse shear strains through the
shell thickness (Approach 1); an approach for layered shells based on the differential
equations of equilibrium (as described®iand’ and denoted with “Approach 2"); and the
present approach. The model consists of a composite cylinder fixed at both ends, which has a
radius of 0.1905 m and thickness of 12.7 mm. The shell consists of orthotropic boron/epoxy
layers with the following material properties; &= 206.8 GPa, & = Es3 = 18.62 GPay;, =

V3= 0.21,v,3=0.45, G, = Gi3 = 4.482 GPa, @ = 2.551 GPa. It is axially loaded and the
buckling value of the load is reported. For L/R = 2 several stacking sequences are investigated
and the results are presented in table 1.

Table 1. Critical axial compression in N/m10™®

Ssé?qukeigge HOSD from® Approach 1 Approach 2 Present
(0°,90°,0°)s 17.82 20.4 18.0 18.2
(90°,0°,90°)s 14.85 16.1 14.5 155
(-45,45°,-45)s 17.08 20.0 17.3 18.2
(45°,45°,—-45), 13.35 14.2 13.0 13.2

As seen the present results are very good compared to the vafiesdénlated using a higher
order shear deformable shell formulation. Fig. 4 shows the force vs. displacement relation
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acquired in the analysis for a standard FOSDT shell and for the same shell with the herein-
proposed modification.

CONCLUSIONS

A correction to the first order shear deformable shell theory is proposed, which results in
parabolic through-thickness distribution of the transverse shear strains and stresses. It
eliminates the need for shear correction factors in the first order theory. The approach is
applicable to all displacement based first order formulations and is simple and extremely easy
to implement in any standard shell finite element. As compared to the other modifications
presented in the literature, in which correction is made in the distribution through the
thickness of the transverse shear stresses only, the proposed modification is more consistent.
The present formulation uses the correct distribution and is consistent for both transverse
shear stresses as well as transverse shear strains.
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Shell Thickness in Example Problem 1
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