x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Shape Optimization Of Instrument Panel Components For Crashworthiness Using Distributed Computing

The ability to quickly design new vehicles with optimal crashworthiness is a goal of automotive manufacturers. This paper takes steps towards that goal by automating manual design iterations. The crashworthiness of an instrument panel was enhanced using LS-OPT and LS-DYNA. It is shown that: • LS-OPT can modify the shape of non-styled parts in the instrument panel in order to • The design was generated several times faster than with manual methods. LS-OPT • The dramatic increase in the size of the design space caused by shape optimization • The cost of obtaining these designs can be reduced by using distributed computing to enhance its crashworthiness by using a parametric preprocessor, e.g. TrueGrid®. generated and executed LS-DYNA runs without need for manual result analysis. was managed efficiently by LS-OPT. explore the design space on workstations which would otherwise be underutilized.

application/pdf session18-1.pdf — 467.0 KB