Shape Optimization Of Instrument Panel Components For Crashworthiness Using Distributed Computing
The ability to quickly design new vehicles with optimal crashworthiness is a goal of automotive manufacturers. This paper takes steps towards that goal by automating manual design iterations. The crashworthiness of an instrument panel was enhanced using LS-OPT and LS-DYNA. It is shown that: • LS-OPT can modify the shape of non-styled parts in the instrument panel in order to • The design was generated several times faster than with manual methods. LS-OPT • The dramatic increase in the size of the design space caused by shape optimization • The cost of obtaining these designs can be reduced by using distributed computing to enhance its crashworthiness by using a parametric preprocessor, e.g. TrueGrid®. generated and executed LS-DYNA runs without need for manual result analysis. was managed efficiently by LS-OPT. explore the design space on workstations which would otherwise be underutilized.
session18-1.pdf
— 467.0 KB