
17-25

Scaling Study of LS-DYNA MPP on High Performance
Servers

Youn-Seo Roh
Sun Microsystems, Inc.

901 San Antonio Rd, MS MPK24-201
Palo Alto, CA 94303 USA

youn-seo.roh@sun.com



17-26

ABSTRACT

With LS-DYNA MPP, scalable Solaris™ operating system and the MPI library, Sun
Microsystems’ Starfire™ server proved to be capable of producing a scalable solution for
large-scale automotive crash simulation problems. It was found that a proper decomposition
plays a significant role in achieving optimal scaling results for large-model, computation-
intensive runs. Also, a large amount of external cache memory on the Starfire SMP server
was found to be crucial for optimal runtime performance. With proper decomposition, a
Starfire server was able to achieve 30X speedup and 93% efficiency with 32 processors in the
simulation run of the NCAC Neon model consisting of 270,000 elements. Version 940.2a of
LS-DYNA MPP showed good repeatability over largely different numbers of processes. It
also displayed an exact repeatability on different runs when the command setting and number
of processes are kept constant.

INTRODUCTION

The SMP version of LS-DYNA has been widely used for reliable simulation of automotive
crashes. As the finite element model becomes larger, the need for parallel computation and a
scalable solution becomes more important. However, it is known that the loop-level
parallelism of SMP binaries shows significantly limited scaling behavior for any number of
processors above 8[1]. On the other hand, massively parallel processing (MPP) binary of LS-
DYNA takes advantage of better scaling properties through domain decomposition technique
and message passing interface (MPI) programming. Therefore, there has been an increased
interest in recent years in introducing LS-DYNA MPP in larger scale crash simulation runs
[2-7].

Sun Microsystems' Starfire server [8] has been widely accepted in the financial and
telecommunication markets. With its widespread acceptance in various industries, one of the
areas that Starfire server covers is the high performance computing arena. With its highly
scalable performance characteristics together with proven reliability and availability features,
the Starfire is considered to be an uninterrupted computational resource in automotive
industries. In this study, this consideration was tested and verified through a scaling study of
the LS-DYNA MPP running large-scale public domain crash models.

APPROACH

Benchmark Problems
Two public domain finite element crash models were used for this study of representative
cars. The first one is a 270,000-element Plymouth Neon model for a full frontal barrier crash.
The second one is a 28,000-element Ford Taurus model also for a full frontal barrier crash.
Both models were developed at the FHWA/NTSA National Crash Analysis Center at the
George Washington University [9]. Table 1 shows the summary of both models studied.

Table 1. Summary of benchmark problems
Neon Taurus

Number of nodes 286,103 26,737
Number of Solid Elements 2,956 341
Number of Shell Elements 269,329 27,873
Number of Beam Elements 63 140
Number of Active Parts 325 124



17-27

Benchmark systems
For the benchmarks, LS-DYNA MPP binary version 940.2a was used.

Hardware systems used were two Sun Microsystems’ Enterprise™ 10000 (E10000) or
Starfire, servers. Server A was with 64 333MHz UltraSPARC processors with 4MB of
external cache and 64 GB of shared memory. Server B was with 64 400MHz UltraSPARC
processors with 8MB of external cache and 64 GB of shared memory. For both servers,
Solaris 7 was used as the operating system. The multi-process runtime environment used was
Sun’s HPC Cluster Tools version 3.0 [10]. Job execution and load balancing were done by
Platform Computing’s LSF 3.2.3. Table 2 shows the summary of benchmark systems.

Table 2. Summary of Benchmark Systems
Executable LS-DYNA MPP v.940.2a

Hardware
Server A: E10000
64 x 333MHz UltraSPARC, 4MB
external cache, 64GB shared memory

Server B: E10000
64 x 400MHz UltraSPARC, 8MB
external cache, 64GB shared memory

Operating System Sun Solaris 7
Runtime Environment Sun HPC Cluster Tools v.3.0, MPI v.6.0
Load Balancing Platform Computing LSF v.3.2.3

As a true shared memory processors (SMP) system that can be scaled up to the full 64-cpu
configuration, a Starfire has a certain characteristics that suits scalable applications:

- fast interconnect called Gigaplane-XB supporting 12.8 GBytes/second memory
bandwidth and 6.4 GBytes/second peak I/O bandwidth.

- Constant low latency to memory: 400-600nsec latency, equal accesstime to all
processor boards.

This feature together with the scalable Solaris operating system results in a very good
scalability up to 64 processes. In many user benchmarks, the system shows super-linear or
near-linear scaling up to full 64 processes. In this study, this scalability of Starfire servers has
been tested against number crunching crash simulation benchmarks.

DISCUSSION OF RESULTS

- Neon Model

Model at the start of the simulation. Model at the end of simulation time, 80msec.

Figure 1. Results of Neon model simulation.



17-28

Initial scaling study was done on the server A of Table 2. Table 3 shows the scaling result for
the Neon model. The simulation time was from 0 to 10msec. The data were obtained with the
default decomposition of the model.

Table 3. Scaling results of Neon model on the server A. Run to 10msec with default
decomposition.

NCPU Elapsed Time(sec) Scaling Efficiency(%)
1 92566 1.0 100
2 56708 1.6 82
4 29586 3.1 78
8 14269 6.5 81
16 8298 11.2 70
32 4401 21.0 66
48 3548 26.1 54
56 3230 28.7 51

The data of Table 4 show improved scaling with the aid of better decomposition. The
decomposition scheme uses pfile command line input. The pfile used in the study was:

decomp {
expdir 2 expsf 15
silist 2,6

}

With this pfile, two different kinds of decomposition were being applied to the problem. As
shown in the first line, by changing the scale factor in a certain direction, it is possible to
assign more computations in one part of the model. In the case shown above, direction 2 is
the vehicle longitudinal axis, and with expsf of 15, the decomposer assigns more processes
for the front part of the vehicle where computationally more expensive contacts occur. The
net effect then becomes a better load balancing among processors that in turn allows for better
scalability.

The second line of pfile directs the decomposer routine to apply decomposition first to the
specified sliding interfaces 2 and 6 using the total available processors where computationally
more expensive contact calculations happen. The decomposition of the remaining workload
consisting of less expensive typical element processing follows afterwards. By doing this,
more even distribution of workload to the total available processors, which in turn results in
better scalability. It turns out that a single large contact definition is beneficial for good
scalability. In addition, it is possible to group the contact definitions of existing models into
one big contact definition in pursuit of better scalability, although the procedure involves
modification of the model that can be time consuming [11].



17-29

Table 4. Scaling results of Neon model on the server A. Run to 10msec with decomposition
using pfile.

NCPU Elapsed Time(sec) Scaling Efficiency(%)
Timing Improvement

w.r.t. Table 3
1 94130 1.0 100 0.98X
2 41594 2.3 113 1.36X
4 21773 4.3 108 1.36X
8 10500 9.0 112 1.36X
16 6258 15.0 94 1.33X
32 3361 28.0 88 1.31X
48 2542 37.0 77 1.40X
56 2433 38.7 69 1.33X

Table 5 shows another scaling results of the Neon test case on the other Starfire server with
400MHz, 8MB external cache memory (server B). It shows super-linear scaling up to 8
processes and near-linear scaling up to 32 processes where the efficiency reaches 93%. The
run still scales well above 32 processes,although the rate starts to level off. This seems to be
because for the given amount of the total computation, which is determined by the size of the
model, the cost of inter-process communications starts to cancel off the performance gain
from parallel computation. Compared to the results of Table 4 from server A, the elapsed time
shows up to 46% of improvement. Taking into account the 20% increase in processor speed,
the rest of the improvements up to 23% are from the larger external cache size allowing more
computations to be done within the cache memory.

Table 5. Scaling results of Neon model on the server B. Run to 10msec with decomposition
using pfile.

NCPU Elapsed Time(sec) Scaling Efficiency(%)
Timing Improvement w.r.t.

Table 4
1 68599 1.0 100 1.37X
2 31735 2.2 108 1.31X
4 15406 4.5 111 1.41X
8 8077 8.5 106 1.30X
16 4493 15.3 95 1.39X
32 2310 29.7 93 1.46X
48 1805 38.0 79 1.41X
56 1664 41.2 74 1.46X

Figure 2 summarizes scaling results of the Neon model, revealing the noticeable effect of
decomposition on scalability.



17-30

Figure 2. Scaling results of Neon model. Runs to 10msec.

Table 6 shows the elapsed times for the full 80msec simulations on Server B. With the same
expsf value used for the data of Table 3-5, a floating point exception was caused at around
40msec. However, if a different value of expsf for the number of processors equal to 32 was
used, this made the full-time run finish without error. The floating-point exception needs to be
examined further.

Table 6. Elapsed time for Neon model. Runs to 80msec with decomposition on Server B.
NCPU Elapsed Time (sec)

8 67619 (18.8 hr)
16 FPE
32 18594 (5.2 hr) (expsf = 30)
48 14631 (4.1 hr)
56 13581 (3.8 hr)

-Taurus Model

The Taurus model is much smaller than the Neon model, however the same principle of
decomposition was applied to verify the scalability. With the pfile of:

decomp {
expdir 2 expsf 15

}

It was possible to obtain a superlinear scaling up to 8 processors and 95% efficiency at 16
processors as shown in Table 7.

Beyond 16 processors, the scalability rapidly decays when the cost of inter-process
communication starts to outweigh the benefit of parallel computations.



17-31

Table 7. Scaling results of Taurus model on the server A. Run to 5msec with pfile
decomposition.

NCPU Elapsed Time(sec) Scaling Efficiency(%)
1 3730 1.0 100
2 1771 2.1 105
4 788 4.7 118
8 428 8.7 109
16 246 15.2 95
32 184 20.3 63

CONCLUSIONS

Correctness of the results
In this section, the correctness of multiprocessor parallel runs with LS-DYNA MPP was
verified by comparing test results with the Neon model.

Figure 3 shows the normal force component of rwforc output acting on the front rigid wall
barrier. Three full-time outputs are compared for the number of processors: 8, 48 and 56. The
plots show good coherence for a vastly different number of processors and the amplitude
deviations are within 5 per cent of the full scale. Especially for processor number of 48 and
56, the two outputs are very close to each other.

Figure 3. Rigid wall normal force outputs from different runs with 8, 48,
and 56 processors. 60Hz SAE filters were used.

For a given number of processes, outputs from two different runs have been compared. Figure
3 shows the comparison results where the two separate runs were using 48 processes. One
ASCII output curve of rwforc fell exactly on top of the other. In fact, for the same number of
processes and same runtime setting, two runs produced exactly the same ASCII output files
generated by the dumpbdb executable. This proves that the new LS-DYNA MPP is capable of
producing identically repeatable results when the same number of processes is used between
different runs.



17-32

Figure 4. Repeatability test of LS-DYNA MPP. Output is the rigid wall normal force, rwforc.
Runs were made on server B with number of processes of 48. 60Hz SAE filters were used.

ACKNOWLEDGEMENT

Dr. C.D. Kan of FHWA/NHTSA National Crash Analysis Center is acknowledged for
providing with the Neon model. Drs. Jason Wang and Philip Ho of LSTC are acknowledged
for their helpful comments on the decomposition and the use of LS-POST, respectively.

REFERENCES

[1] KAN, C.-D. and LIN, Y.-Y. “Evaluation of High Performance Computer Systems Using
a Large Size Finite Element Model,” 1999, Second European LS-DYNA Users Conference.

[2] WAINSCOTT, B., WANG, J. and STANDER, N., “LS-DYNA/MPP Version –
Development, QualityAssurance, Status and Progress,” 1998, 5th International LS-DYNA
Users Conference.

[3] KAN, C.-D., Lin, Y.-Y. and HOLLAMBY, R., “Evaluation of MPP Version of LS-
DYNA and Its Comparison with the SMP Version,” 1998, 5th International LS-DYNA Users
Conference.

[4] LIN, Y.-Y. and KAN, C.-D., “Crash Simulation on Parallel Multiprocessors,” 1998, 5th

International LS-DYNA Users Conference.

[5] LAM, D., SKINNER, G. and PATTANI, P., “On the Road to Achieving LS-DYNA
Parallel Performance on High Performance Computers,” 1998, 5th International LS-DYNA
Users Conference.

[6] ROBICHAUX, J., AKKERMAN, A., BENNETT, C., JIA, R. and LEICHTL, H., “LS-
DYNA 940 PARALLELISM ON THE COMPAQ FAMILY OF SYSTMES,” 1998, 5th

International LS-DYNA Users Conference.

[7] CHU, R. and ZAIS, J., “Activities ofMPP-DYNA at SGI-Cray,” 1998, 5th International
LS-DYNA Users Conference.



17-33

[8] http://www.sun.com/servers/highend/10000/index.html

[9] http://www.ncac.gwu.edu

[10] http://www.sun.com/software/hpc

[11] Private conversation with Jason Wang, Livermore Software Technology Corp.



17-34


