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ABSTRACT

Over the past year, efforts have been underway to extend LS-DYNA’s extensive list of
capabilities to include an incompressible CFD solver. The focus of this paper is on the
second-order approximate projection method used in LS-DYNA to solve thetime-dependent
Navier-Stokes equations. In order to address the computational demands of the implicit
pressure field, LS-DYNA relies, in part, upon an A-conjugate projection technique coupled
with the preconditioned conjugate gradient method and sub-domain preconditioners. Results
of time-dependent laminar and large-eddy simulations are used to illustrate the effectiveness
of the projection-based preconditioned conjugate gradient method coupled with the second-
order approximate projection flow solver. As a new physics option in LS-DYNA, the
incompressible flow solver complements the existing compressible fluid/ALE simulation
capabilities.

INTRODUCTION

LS-DYNA provides a comprehensive set of multi-physics simulation capabilities for
problems ranging from crashworthiness, occupant safety and metal forming to fluid-structure
interaction, heat transfer and now incompressible flow. Incompressible flows are some of the
most frequently encountered flow regimes encompassing problems that range from
atmospheric dispersal to food processing, aerodynamic design of automobiles, and
manufacturing processes such as chemical vapor deposition, mold filling and casting. The
need for scalable time-accurate solution algorithms is growing due to emerging applications
that are inherently time-dependent, e.g., mold filling, fluid-structure interaction, and internal
combustion engine manifolds. The expanding use of large-eddy simulation (LES) and time-
dependent Reynolds Averaged Navier-Stokes (RANS) calculations is also driving the need
for scalable transient flow solution methods.

The algorithmic challenges involved in solving time-dependent, incompressible flow
problems hinge upon the div-free constraint, efficient treatment of the concomitant implicit
pressure and scalable, parallel solution algorithms. Over the past 5-10 years, second-order
projection methods have emerged as the most computationally efficient algorithms for
performing time-accurate incompressible flow simulations. A detailed review of projection
methods is beyond the scope of this paper, but a partial list of relevant work is provided.
Projection methods, also commonly referred to as fractional-step, pressure correction
methods, or Chorin's method [1] have grown in popularity due to the relative ease of
implementation and computational performance of these methods. This is reflected by the
volume of work published on the development of second-order accurate projection methods,
see for example van Kan [2], Bell, et al. [3], Gresho, et al. [4-7], Almgren, et al. [8-11], Rider
[12-15], Minion [16], Guermond and Quartapelle [17], Puckett, et al. [18], Sussman, et al.
[19], and Knio, et al. [20]. In addition, the numerical performance of projection methods has
been investigated by Brown and Minion [21,22], Wetton [23], Guermond [24,25], Guermond
and Quartapelle [26,27], and Almgren, et al. [11].

This paper is intended to introduce the projection methods used in LS-DYNA fortime-
dependent incompressible flow simulations and outline the type of problems that may be
addressed using the incompressible flow solver. The ensuing discussion begins with an
overview of the underlying finite element formulation and the basic time integration method.
A brief summary of the A-conjugate projection technique used for the pressure solution is
presented with a series of sample computations.
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FORMULATION

A brief review of the incompressible Navier-Stokes equations and the spatial discretization is
presented before proceeding with a description of the second-order projection method. To
begin, the incompressible Navier-Stokes equations are
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the mass density, ρpP = , andp is the pressure. Note that the simplified form of the Navier-
Stokes equations, i.e., with constant density and viscosity, is used in order to streamline the
presentation.

The system of equations above are subject to boundary conditions that consist of specified
velocity on 1Γ as in Eq. (3), or pseudo-traction boundary conditions on2Γ as in Eq. (4) and
(5).
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) and tangential (τ� ) directions respectively. Similarly, nf

and τf represent the normal and tangential components of the boundary traction.
Homogeneous traction boundary conditions correspond to the well-known natural boundary
conditions that are typically applied at outflow boundaries.

In addition to the boundary conditions, initial conditions are required.
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For a well-posed time-dependent incompressible flow problem, the prescribed initial velocity
field in Eq. (6) must satisfy Eq. (7) and (8) below (see Gresho and Sani [28]). If 02 =Γ (i.e.,

an enclosure flow with nu
��

⋅ prescribed on all surfaces), then global mass conservation enters
as an additional solvability constraint as shown in Eq. (9).

0=⋅∇ u
�

in Ω (7)

)()0,( 0 xunxun
������

⋅=⋅ (8)

� =Γ⋅Γ 00dun
��

(9)
Before proceeding with a description of thetime integration algorithms, the semi-discrete
Navier-Stokes equations are presented. The basic spatial discretization of the conservation
equations is achieved using the Q1Q0 element [29] with bilinear support for velocity and
piecewise constant support for the pressure in two dimensions. In three dimensions, the
velocity support is tri-linear with piecewise constant support for pressure. The methods for
obtaining the weak form of the conservation equations are well known and will not be
repeated here (see for example, Gresho and Sani [29]).

The spatially discrete forms of Eq. (1) and (2) are
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whereM is the unit mass matrix, uuA
��

)( andK are the advection and the viscous diffusion

operators respectively, andF
�

is the body force.C is the gradient operator, andTC is the
divergence operator. In order to simplify the nomenclature in the subsequent discussion,
u
�

and P are understood to be discrete approximations to the continuous velocity, and
pressure.

FEM PROJECTION METHOD
Although fully coupled solution strategies are available, the cost of such methods is currently
considered prohibitive for time-accurate three-dimensional simulations− particularly where
high-resolution grids are required. The philosophy behind projection algorithms is to achieve
a legitimate decoupling of the pressure and velocity fields in the hope of providing an
efficient computational method for transient, incompressible flow simulations. Projection
methods decouple the solution of the velocity and pressure fields by first computing an
intermediate velocity field, and then performing an orthogonal projection to a div-free
subspace.

In LS-DYNA, the optimal Projection-2 (P2) method identified by Gresho [4,5] provides the
basic underlying solution strategy.

Semi-Implicit Projection-2 (P2)

1. Given a div-free velocity, nu
�

, and its corresponding pressure field,nP , solve for an

intermediate velocity field,u
�~ , at time 1+nt . Here, the advection is treated explicitly

using a centroid advection velocity combined with a predictor-corrector step with an
“operator limiting” procedure to preserve monotonicity.
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2. Given the approximate velocity,u
�~ , solve a pressure Poisson equation (PPE) for the

Lagrange multiplier,λ .
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3. Perform the projection step to obtain the final div-free velocity field,1+nu
�
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4. After the velocity update, a new pressure at time1+nt is obtained via
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5. Repeat steps 1-4 until a maximum simulation time limit or a maximum number of
time steps is reached.

Remarks

1. In Eq. (12), K̂ is the viscous operator obtained in the weak formulation and
augmented by a balancing tensor diffusivity (BTD) that derives from the second-
order, explicit time integrator applied to the advective terms. See Gresho, et al. [30]
or Christon [31] for additional details on BTD. The semi-implicit treatment of BTD
permits stable computations forCFL numbers from 5 to 10. By default 21=θ is
chosen corresponding to a second-order trapezoid method applied to the viscous
diffusion terms.

2. Eq. (13) represents an algebraic system of equations that is solved for the element-
centered Lagrange multiplier,λ , during the time-marching procedure. The modified
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PPE in Eq. (13) incorporates the effect of the essential velocity boundary conditions
from Eq. (3), and automatically builds in the boundary conditions from Eq. (4) and
(5) - see Gresho, et al. [5]. Figure 1 shows the primary and dual staggered grids and
the location of the cell-centered whereλ andP variables.

3. The use of a stabilized PPE, ][ 1 SCMC L
T +− , yields an approximate projection

method. In Eq. (13), the consistent PPE is recovered when0=S resulting an exact
projection method.

Pressure DOF

Primary Grid

Velocity DOF

Dual Grid

Figure 1. Mesh showing two velocity degrees-of-freedom (DOF) per node, and the PPE dual
grid with one DOF per element.

Pressure Stabilization
Although the Q1Q0 element has been condemned bytheoreticiansfor its weakly singular
modes, this element has been the workhorse for incompressible flow and continues to be
widely used. The unstable modes of the Q1Q0 element have been investigated by Sani, et al.
[32,33] and more recently by Griffiths and Silvester[34]. Griffiths and Silvester have
demonstrated that for problems of physical interest, the Q1Q0 element converges to the true
solution in the limit as 0→h . Additionally, a new convergence proof for the Q1Q0 element
may be found in Gresho and Sani [29].

In LS-DYNA, two pressure stabilization methods are used to circumvent the well-known div-
stability condition. The local jump stabilization techniques developed by Silvester [35,36]
and by Norburn and Silvester [37] provide the foundation for the local methods that are
implemented in LS-DYNA. For completeness, the so-called global jump stabilization (first
proposed by Hughes and Franca [38]) is also available. In effect, both jump stabilization
techniques provide an a priori filter for the weakly unstable pressure modes associated with
the Q1Q0 element. However, the use of pressure stabilization results in an approximate
projection method since the stabilized PPE is no longer constructed using only the discrete
div and grad operators.

The global jump stabilization formulation introduces a pressure diffusion operator that
perturbs the incompressibility constraint. The global jump formulation insures mass
conservation in a global sense since the null space of the stabilizing matrix,S , contains the
constant-pressure vector. However, the global jump stabilization smears the div-free
constraint locally over a small region, i.e., the divergence is not zero at the element level.
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In contrast to the global method, the local jump stabilization procedure relies on the
construction of macro-elements that contain at least one velocity node per edge of the macro
element in two dimensions and one velocity node per face in three dimensions. This is shown
schematically for two-dimensions in Figure 2. In order to use the local jump stabilization
formulation, a pre-processing step that identifies the macro-elements is required. Unlike the
global jump stabilization, mass is conserved globally and at the macro-element level. The
beneficial effect of the jump stabilization formulations on the convergence rate for ICCG(0)
has been presented in Gresho and Sani [29] where a factor of two reduction was observed.
Similar results have been obtained by Christon [39] for theSSOR preconditioned conjugate
gradient method.

Figure 2. Reference macro-elements showing velocity DOF on inter-element boundaries.

The Projection CG Method
The solution of the time-dependent incompressible Navier-Stokes requires the repeated
solution of the PPE problem where the coefficient matrix is fixed and the right-hand side
changes each time step. To address this aspect of solving the PPE, an A-conjugate projection
technique is integrated with the iterative solution of the PPE in order to use solution
information from the previous time steps. In the ensuing discussion, the PPE problem is cast

as bAx = where SCMCA L
T += −1 , λ=x and nTT uCuCb

�

�

−= ~ .

The use of an A-conjugate projection as a pre-processing step for the solution of the linear
system, bAx = , follows the development presented by Fischer [40] with extensions that
permit the treatment of either the consistent or stabilized PPE and seeding the A-conjugate
projection vectors. Related work on solving linear systems with multiple right-hand sides may
be found in Saad [41] and Chan and Wan [42].

To begin the development, the idea of a pre-processing A-conjugate projection step relies on
minimizing the distance between the solution at a given time step,x , and the base vectorsΦ
in the A-norm. Here,Φ is a set of A-conjugate vectors derived fromN prior solutions to

bAx = where }...,,,{ 21 Nφφφ=Φ . As shown in Christon [39] 5=N to 10=N provides a
nearly optimal trade-off between memory requirements and performance. The memory cost
associated with this number of projection vectors is slightly less than the cost of one
preconditioning matrix.

Following Christon [39], given a set of A-conjugate vectors,Φ , the best approximation to
nx at time level n is the one that minimizes the error in the A-norm. This is obtained by

projecting the right-hand-side, nb , at time-stepn onto the set of base vectors,Φ . This
suggests the following solution procedure.

Velocity DOFPressure DOF
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A-conjugate projection CG method

1. Compute the dot-products to obtain nT
ii bφα = for all available base vectors.

2. Estimate the initial solution, �=
=

M

i
iix

1
φα where M is the number of A-conjugate base

vectors available in the set ofN possible base vectors, i.e., NM ≤ .

3. Solve bb rxA =∆ using the conjugate gradient method where xAbr nn −= .

4. Update the solution, nn xxx ∆+= , where �=
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5. Update the base vectors,Φ , to include new information from the current solution.

Initializing Φ for the first solution, or when the number of existing base vectors exceedsN ,

is achieved by normalizing the solution as
A

xx 11
1 =φ where {} � �⋅⋅=⋅ AT

A
. For all

other cases, a solution vector is a candidate for addition toΦ only when it contains non-
trivial information that is not already present in the basis. Here, the basic idea is thatx∆ is A-
conjugate tox as well as to the individual base vectorsiφ . Therefore, the addition of a new
base vector should be based on criteria that guarantees only new information is being added
to the existing base vectors. Addition of a solution vector (or a part of a solution vector)
proceeds by first computing that part of the solution that is not contained in the basis as
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Here, it is assumed that the basis already containsM vectors. Now, each iφ is A-conjugate to

1+Mψ by construction and is added to the basis as

AM

M
M

1

1
1

+

+
+ =

ψ
ψφ . (17)

To illustrate the use of the A-conjugate projection algorithm, Figure 3a) shows a snapshot of
the pressure field for a 100Re= vortex shedding computation. In addition, Figures 3b) – 3f)
show snapshots of theΦ vectors from the previous five time steps. It is clear that1φ
provides primarily long wavelength information while the other 4 base vectors provide
detailed information about the wake. Thus, the vectors{ }52 ...,, φφ may be viewed as providing

primarily short wavelength corrections to1φ that yield the best approximation to the current
pressure field. The A-conjugate projection procedure, in effect, selects the appropriate
information from eachφ vector in order to minimize the residual in the A-norm before

performing any CG iterations.

The A-conjugate projection procedure retains both long and short wavelength information,
and in this sense, the procedure may be viewed as an approximate means of deflating the
eigenvalue spectrum for the PPE. The combination of the A-conjugate projection method,
PPE stabilization andSSOR preconditioning has proved to be the most computationally
efficient method for solving the PPE.



16-40

a) b)

c) d)

e) f)
Figure 3. Snapshots of a) the pressure field during 100Re= vortex shedding, and five A-

conjugateφ fields b) - f) based on pressure solution at the five prior time steps.

DISCUSSION OF RESULTS

This section presents several computations that demonstrate the capability of the transient
incompressible flow solver in LS-DYNA. The first computation is shown in Figure 4 and
consists of a slot jet with 4000Re= based on a mm15 slot width and a jet velocity of sm4 .
In this computation, an energy equation was solved in conjunction with the Navier-Stokes
equations using the Boussinesq approximation. The initial conditions consisted of a div-free
velocity field with a free-field temperature of K300 and an inlet jet temperature of K400 .
The snapshots of temperature and vorticity illustrate the inherently unsteady shear driven
Kelvin-Helmholtz instability.

Figure 5 shows snapshots of the pressure and vorticity field for the MIT waterfoil. The
waterfoil is a NACA 16 thickness form with maximum thickness %84.80 =ct and

maximum camber %576.20 =cf with a beveled anti-singing trailing edge. This
computation was performed as a laminar-flow simulation for 000,10Re= based on chord
length. At this Reynolds number, the wake is inherently unsteady and exhibits periodic vortex
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shedding. The proximity of the outflow boundary to the trailing edge of the waterfoil was
intentional to illustrate the performance of the “natural” outflow boundary conditions.

Figure 6 shows pressure isosurfaces for a steady-state solution for the 000,10Re= flow past
a 1/24th scale streamline hull. In this computation, quarter-symmetry was used with tow-tank
conditions prescribed at the far field of the computational domain. The transient solution
algorithm was used in a pseudo-time marching mode to obtain a steady-state solution.

Figure 7 shows a snapshot of the x-vorticity field from a large-eddy simulation of a
000,10Re= lid-driven cavity [43]. The computation used a 484848 ×× grid and a

Smagorinsky model. In this calculation, the pressure solver used 5 A-conjugate vectors,
SSOR preconditioning and required approximately 11 iterations per time step on average to
solve for the 110,592 unknown pressures. In this computation, the pressure stabilization
permits the prescription of non-leaky velocity boundary conditions without any deleterious
effects from spurious pressure modes.

CONCLUSIONS

The current incompressible flow simulation capabilities in LS-DYNA include the following.

•= 2-D/3-D time-accurate incompressible Navier-Stokes based on second-order accurate
approximate projection methods.

•= A unique A-conjugate projection-based preconditioned CG pressure solver that
minimizes the computational cost associated with the implicit pressure.

•= Robust pressure-stabilization with mass-conserving macro-elements.
•= A fully-parallel implementation based on a domain-decomposition message-passing

paradigm (MPI based).
•= A monotonicity-preserving advection scheme.
•= Thermal convection and up to 10 species transport equations.
•= Turbulence models.

o Baseline Smagorinsky
o Dynamic Smagorinsky1

o Spallart-Allmaras1

•= Boundary conditions based on nodesets and sidesets.

The time-accurate incompressible flow solver in LS-DYNA will provide the basis for a
viscous fluid-structure interaction capability that will complement the existing boundary-
element fluid-structure and ALE capabilities. In the future, the incompressible flow solver
will be integrated with the existing interface reconstruction algorithms for mold-filling and
casting simulations. In addition, the segregated incompressible solution methodology will be
extended to provide a native steady-state flow solver.
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a) b) c) d)

Figure 4. Snapshots of the 4000Re= momentum driven slot jet showing the temperature
field a) – b), and the vorticity field c) – d). (The temperature and vorticity fields have been

reflected about the vertical centerline.)
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a)

b)
Figure 5. MIT waterfoil – snapshots showing a) pressure and b) vorticity during a vortex

shedding cycle for 000,10Re= .

Figure 6. Steady pressure field for241 scale “suboff” configuration at 000,10Re= . (The
quarter-symmetry pressure field has been reflected about the x-y plane.)
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Figure 7. Snapshot showing the x-vorticity field for a large eddy simulation of a
000,10Re= lid driven cavity.

Lid Velocity


