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Abstract

This paper focuses on a successive response surface method for the optimiza-
tion of problems in nonlinear dynamics. The response surfaces are built using
linear mid-range approximations. To assure convergence, the method employs
two dynamic parameters to adjust the move limits. These are determined by the
proximity of successive optimal points and the degree of oscillation, respective-
ly. Three diverse examples namely in impact design, sheet metal process design
and system identification are used to demonstrate the method. The methodolo-
gy has been incorporated as a parallel solver in the commercial software code
LS-OPT.

INTRODUCTION

The Response Surface Method (Myers, 1995) has become a popular method
for conducting optimization involving the simulation of nonlinear dynamical
problems. The purpose of the method is primarily to avoid the necessity for
analytical or numerical gradient quantities as these are either too complex to
formulate, discontinuous or sensitive to roundoff error. A common optimization
procedure is to build a high order response surface in a region of interest in the
design space and to refine the response surface in a semi-automated fashion by
moving the center of the region of interest as well as reducing its size. Such an
approach is suitable for making design improvements but not for problems such
as the parameter identification of systems or materials where a converged result
is desirable. Automated methods have therefore been formulated to address
problems in rigid body dynamics (Etman, 1997) and sheet metal forming (Kok,
1998), (LSTC, 1999). The method presented here incorporates sophisticated
features into these approaches. These are:

� contraction of the region of interest to a reasonable, possibly irregular
design space,

� the use ofD-optimal experimental design within an irregular design s-
pace,

� the use of move characteristics to determine the contraction rate of the
region of interest and

� the identification of oscillation vs. ‘panning’ (translation of the region of
interest in the design space) to determine the maximum shrinkage rate of
the region of interest.

Nonlinear dynamic problems are particularly susceptible to random error of
which the degree is difficult or impossible to determine analytically. Hence the
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approximation error has not been used to determine the dynamic parameters of
the method.

APPROACH

Experimental design
The method presented here is based on the design of experiments. For experi-
mental design theD-optimality criterion is used (Myers, 1995). The advantage
of this criterion is that experiments can be chosen in an irregular design space
(Kaufman, 1996). This feature is advantageous for two main reasons:

� Accuracy. If design constraints are chosen as bounds for the region of
interest, the size of the region is reduced which is likely to give a more
accurate result.

� Robustness. Non-robust or unreasonable designs can be avoided. Exam-
ples can be found amongst designs with an unreasonably large mass or
designs which may cause failure of the simulation process.

Approximations
In response surface methodology surfaces are fitted to the responses of the de-
sign points determined by the experimental design. A common approximation
method is the fitting of polynomials although other types of surfaces can also be
used. Quadratic polynomials are usually accurate for a mid-range region of the
design space but because the expense is a function ofn2 (wheren is the num-
ber of design variables) they are normally avoided for large design problems.
This applies particularly to nonlinear problems involving large finite element
models. A possible solution is to use linear approximations. These are gener-
ally inaccurate beyond the immediate neighborhood of the design point but can
be used in a successive response surface procedure (Etman, 1997). The diffi-
culty with using successive linear approximations is thatcyclingor oscillation
may occur. This phenomenon can be countered by manipulation of the size of
the region of interest, a measure analogous to applying move limits in succes-
sive linear programming. Heuristic measures are typically introduced (Etman,
1997).

Successive response surface method
In the following procedure, two parameters have been used to drive a successive
linear response surface method:

1. A maximum contractionparameter is determined based on whether the
current and previous designs are on opposite or the same side of the region
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of interest. The former case signals the onset of oscillation while the
latter suggests that the optimum lies beyond the region of interest. The
parameter determines the maximum shrinkage rate and should therefore
be small for the oscillatory case and big for the ‘panning’ case.

2. An effective contractionparameter interpolates between the maximum
contraction parameter and a constant minimum contraction parameter us-
ing the distance of the current optimum to the center of the region of
interest as input.

Software: LS-OPT
The afore-mentioned methods have been incorporated in the program LS-OPT,
a command language-based, standalone general optimization program which
is closely interfaced with LS-DYNA. Access to most quantities available in
the LS-DYNA database has been provided and maximum, minimum, averaged
and filtered (see cylinder example) quantities can be automatically extracted.
Special metal-forming quantities such as the forming limit criterion (FLD) are
also available. For shape optimization (Akkerman, 2000), a preprocessor can be
incorporated in the design cycle. Job execution can be conducted in parallel and
in a distributed fashion (Akkerman, 2000) using an additional module. Multi-
case and multi-disciplinary optimization can be conducted.

EXAMPLES

In the present study, the iterative solver within LS-OPT has been applied to
the optimization of a diversity of problems in nonlinear dynamics using LS-
DYNA. The purpose, in each example, is to use a remote, often unreasonable
initial design to test the robustness and efficiency and to assess the requirement
for a good starting design. A final tolerance of 1% has been set on the objective
function.

Three examples are used to illustrate the methodology implemented in LS-OPT.
A fourth example, that of a vehicle crashworthiness optimization appears else-
where in these proceeedings (Akkerman, 2000).

Airbag system identification
Five system parameters, representing the leakage properties of a deploying and
impacted airbag (Figure 1) are determined from the displacements, velocities
and accelerations produced by two separate physical experiments. The leak-
age properties are represented by a leakage vs. pressure curve defined by five
unknown ordinates. The two experiments are distinguished by the velocity of
impact namely 4 m/s and 5 m/s. Altogether 54 responses, 9 per time history
curve, are used in the regression. This represents a monitoring increment of 5
ms.
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The design requires amonotonicleakage curve. Some designs resulting from
a standard experimental design may not have this property and may therefore
cause the simulation to fail. Monotonicity of the experimental design can be
enforced by using the constraints on the design variables:

xk+1 > xk; k= 1;2; :::;9 (1)

to relocate points in a new, irregular region. AD-optimal experimental design,
using 17 points, is thus determined within a so called “reasonable design s-
pace” (Kaufman, 1996) defined by the monotonicity constraints.D-optimality
is chosen as one of few possibilities for determining an experimental design in
an irregular design space. To test the robustness of the algorithm, a constant
number, 0.6, was chosen to represent the starting design for all variables. The
bounds [0.2,4] were applied uniformly with an initial range of 1.0. This starting
point causes two designs to abort. In the first iteration the procedure therefore
relied on oversampling of the design space to simulate enough designs (8 out of
10).

The objective of the problem is to minimize the discrepancy between the com-
putational and experimental results, thereby effectively calibrating the compu-
tational model. The RMS residual

R=

vuut 54

∑
j=1

�
f j(x)�Fj

Γ j

�2

(2)

is used as a measure of calibration accuracy. Since all quantities are in different
units, they have been normalized using suitableΓ j . The symbolsFj represent
the target values of the responses andf j the computational responses.

Figure 1: Airbag: Deployment, impact (33 ms) and rebound (50 ms)
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The optimization history (Figure 2) and the optimal design (Table 1) show that
although there are 5 design variables, some of them are constrained by the
monotonicity, with the result that there are only three independent variables.

Table 1. Optimal leakage ordinates vs. pressure

Variable Pressure Leakage
x1 2.0 0.361
x2 2.25 1.492
x3 2.5 1.492
x4 2.75 1.492
x5 3.0 5.25

The first variable oscillates while the last has not converged yet. However, judg-
ing by the convergence properties of the residual and by the design sensitivities
(not shown here) the smaller sensitivities of these two variables appear to render
them insignificant in the neighborhood of the optimum.
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Figure 2: Airbag: Optimization History

Figure 3 shows that there is a major improvement in the model as a result of the
optimization process.
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Figure 3: Airbag: Comparison of computational and experimental results

Sheet metal form design
A sheet metal problem (Figure 4) is presented in which themaximumradius of
the cross-sectional die geometry has to be minimized.

Figure 4: Finite Element model of tools and blank

Three design variables, the outer three radii of the cross-section of the die, have
been chosen. The constraints are the forming limit criterion (zero is the bound-
ing value) and the maximum thinning of 20%. Mesh adaptivity is used during
analysis to improve the curvature of the deformed model (shown with a coarse
mesh in Figure 4). A detailed description of the problem can also be found in
the LS-OPT User’s Manual (LSTC, 1999).
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The initial radii are chosen as 1.5mm uniformly and the final results are shown
in Figure 5. The history results show that the thinning and FLD responses
converge in about 2 iterations. Two or three further iterations are required to
minimize the maximum of the three radii. A violation of the bounds of the
region of interest occurs in the first iteration because a feasible design could not
be found and therefore the bounds are compromised by the core optimization
solver. Figure 6 shows the baseline and optimal flow limit diagrams with the
degree of violation clearly visible for the baseline case.
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Figure 5: Metal forming: optimization history
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Figure 6: Baseline and optimal flow limit diagrams

Impact optimization
The problem, based on (Yamazaki, 1997), consists of a tube impacting a rigid
wall as shown in Figure 7. The energy absorbed is maximized subject to a
constraint on the maximum rigid wall impact force. The cylinder has a constant
mass of 0.54 kg with the radius and thickness as design variables. The length of
the cylinder is dependent on the design variables because of the mass constraint.
A concentrated mass of 500 times the cylinder weight is attached to the end of
the cylinder not impacting the rigid wall. The deformed models are shown in
Figure 8.

The optimization problem is stated as:

MaximizeEinternal(x1;x2)jt=0:05

subject to
Fwall

normal(x1;x2)jmax� 100,000

l(x) =
0:52

2πρx1x2

where the design variablesx1 and x2 are the radius and the thickness of the
cylinder respectively.Einternal(x)jt=0:05 is the objective function and constraint
functionsFwall

normal(x)jmax and l(x) are the maximum normal force (filtered with
SAE 300Hz) on the rigid wall and the length of the cylinder respectively.
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l

x2

10 m/s

x1

Figure 7: Impacting cylinder

Figure 8: Deformed configurations: (a) Baseline (t = 50ms) and (b) Optimal
(t = 50ms)

The optimization history (Figure 9) shows that the initial design is severely
infeasible but that the design evolves to be feasible after two iterations. The
reduction of the force coincides with an increase in absorbed energy. The data
of the optimal design are given in Table 2.
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Table 2. Starting values, bounds and optimal values

Variable Start Lower Optimum Upper
Bound Bound

Radius 75 30 30 100
Thickness 3 2 4.7 6
Internal energy 12,490 13,360
Peak Wall force 1,544,000 109,100 100,000

Figure 10 confirms the feasibility of the design with three of the force peaks
being active. It is apparent that the baseline design is too soft, causing a sudden
large force peak upon contact of the trailing mass with the wall. The optimal
design has a more evenly distributed force with a small violation of about 9%.
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Figure 9: Cylinder: Optimization History
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Figure 10: Cylinder: Constrained rigid wall force:F(t)� 100;000 (SAE
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SUMMARY

The computational effort of the above examples is summarized in Table 3. The
numbers are based on the stopping criterion of a 1% change of the objective
function. Because of the direct use of the design variables in the objective of
the sheet metal problem, the tolerance has been relaxed to 3%. The final check
simulation and case multiplicity (airbag problem) are included in the numbers
of the last column.

Table 3. Summary of Computational Data

Problem type Variables Simulations/it. It. Simulations
Airbag 5 10 10 101�2
Sheet-metal Die 3 7 8 57
Cylinder 2 5 3 16

The methodology has also been validated by the larger problem with 11 design
variables (Akkerman, 2000). That problem requires 3 iterations employing 58
simulations in total (19 each).
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CONCLUSIONS

An adaptive successive response surface method which employs the conver-
gence properties in conjunction with a ‘reasonable’ experimental design proce-
dure is shown to provide a high degree of accuracy, robustness and efficiency
for optimization. Starting from a remote and often unreasonable initial design,
an optimal design of reasonable engineering accuracy can be obtained rapidly.
Linear approximations make the approach effective for a large number of de-
sign variables. The methodology is suitable for a wide range of problems in
nonlinear dynamics and is highly accurate, as is often required for parameter
identification problems.
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