4a impetus – efficient evaluation of material cards for non-reinforced and reinforced thermoplastics

Peter Reithofer, Martin Fritz, Reinhard Hafellner

4a engineering GmbH, Industriepark 1, A - 8772 Traboch

Abstract

LS-DYNA© has included plenty of material cards, each of them offering different scalability and complexity to describe the behavior of non-reinforced thermoplastics. The consideration of the strain rate behavior is included in many material cards, e.g. in the well known MAT_PICEWISE_LINEAR_PLASTICITY. More complex material models can also handle varying compression and tension behavior as well as unloading by using damage functions. One of the recent development results is MAT-SAMP-1 by Du Bois, Kolling, Feucht and Haufe. This specially developed material model for polymers includes a yield surface out of different loading cases and a damage function for better description of unloading.

For better use of the above mentioned models a huge amount of tests have to be carried out, to determine the material parameters and to represent the thermoplastic characteristics in crashworthiness simulations. 4a impetus builds up an efficient and reliable process, starting with realistic tests and finally ending up with a validated material card. Recent developments of new test methods for 4a Impetus are presented, that satisfy the needs of complex material models as well as the expectations with regard to easy and favorable testing.

Limits and opportunities of different test methods and material card implementations are shown and compared to each other especially focused on typical polymer behavior. Finally the influence of fiber reinforcement is discussed and solutions to determine material parameters by using micro mechanic models (4a MicroMec) are shown.
4a impetus – efficient evaluation of material cards for non-reinforced and reinforced thermoplastics

4a Impetus

4a engineering GmbH
Industriepark 1
8772 Traboch
Austria

content

- polymer materials
 - general behavior
 - influences
 - classical approach for the measurement of thermoplastics
 - influences caused by fiber reinforcement
- 4a Impetus
 - general mode of operation
 - dynamic bending test
 - static bending
 - optimization
 - graphical user interface
 - stress/strain rules
 - strain rate rules
 - LS DYNA Material Cards
 - different test assemblies
- outlook and conclusions

© 2009 Copyright by DYNAmore GmbH
Polymer materials
general behavior [2]

- The morphology and build up cross linking allows the distinction of three different types of polymer materials, with different mechanical characteristics.

- Due to the thermoplastic morphology different reasons can be identified as a trigger for break.

Polymer materials
influences

- Material: chemical framework, molecular weight distribution, morphology, filler, reinforcements, blend

- Process: flow direction, cooling rate

- Behavior: content, orientation

- Application: component, geometry / structure

- Conditions: temperature, ambient humidity, loading rate, loading duration, loading case, loading path, triaxiality
Polymer materials
classical approach for measurement of thermoplastics

For the measurement of the mechanical behavior of thermoplastics at high velocities and different loading cases specially prepared specimens [3] and optical measurement equipment [3] [5] are needed. The classical highly complex approach and the huge amount of measurement data have to be handled to get good true stress / strain curves under constant strain rates.

Polymer materials
influences caused by fiber reinforcement

Average fiber orientation
\[\alpha = \begin{bmatrix} 0.66 & 0 & 0 \\ 0 & 0.32 & 0 \\ 0 & 0 & 0.02 \end{bmatrix} \]

Relevant for bending load case

Profile over Wall thickness

Average fiber orientation
\[\alpha = \begin{bmatrix} 0.87 & 0 & 0 \\ 0 & 0.11 & 0 \\ 0 & 0 & 0.02 \end{bmatrix} \]
Polymer materials influences caused by fiber reinforcement

Material behavior is:
- orthotropic
- visco elastic
- visco plastic

Identification of the dominant parameter:
By increasing fiber content the influence of the fiber orientation induced orthotropic grows and the influence of the matrix dominate strain rate may decrease.

Polymer materials fiber reinforcement – standard LS DYNA materials

For thermoplastic parts the plate area is typical. Several standard materials laws are presented, that can more or less represent the real material behavior.

Available LS-Dyna Material Laws
- *MAT_ORTHOTROPIC_ELASTIC (2) orthotropic, elastic, no damage
- *MAT_PIECEWISE_LINEAR_PLASTICITY (24) isotropic, elastic- visco plastic
- *MAT_NONLINEAR_ORTHOTROPIC orthotropic, non linear
- *MAT_ORTHOTROPIC_VISCOELASTIC orthotropic, visco elastic
- *MAT_ANISTROPIC_VISCOPLASTIC isotropic elastic, anisotropic visco plastic
- *MAT_ORTHO_ELASTIC_PLASTIC (108) orthotropic, elastic – plastic
- ……
Polymer materials
fiber reinforcement – standard LS DYNA materials

4a Impetus
general mode of operation

- specimen close to reality
 (flat test specimen out of a real manufacturing process)
- realistic test conditions
 (dynamic bending load, most typical load case)
- cost-effective load without additional actuation
 (loaded mass – potential und kinetic energy)
- semi analytical evaluation process
 (analytical evaluation process plus optional usage of neuronal network for a faster
determination of the initial values, optical evaluation process)
- solving the complex load situation by
 integrated simulation process
 (explicit simulation)
- output of material data for simulation
 or direct use
 (in appropriate format optimal output –
test curves – material cards – stochastic outputs)
4a Impetus

Dynamic tests up to a velocity of 10 m/s are possible

bending test on 4a Impetus

4a Impetus

Dynamic bending test

dynamic 3-point-bending

testing mass: 510g and 1311g

test velocity: 0.7 – 4 m/s

radius of fin and counter bearing: 2 mm

50 g acceleration sensors on pendulum and counter bearing
4a Impetus

quasi static test

- 4a Impetus is available with a in-house developed quasi static test equipment.
- The typical test velocity is about 1 mm/s.
- Alternatively an interface to standard test results recorded and evaluated with Zwick testXpert is integrated.
- So the goal is reached, to take into account the influence of strain rates less than 1 1/s for the building of the material model.

4a Impetus

optimization – reverse engineering

Source: DA Fritz
4a Impetus optimization – reverse engineering

- minimization of the average deviation between simulation and test curves

\[e = \frac{1}{P_m} \left(\int (x) - f(x) \right)^2 = \frac{1}{P_m} \left(\sigma(x) \right)^2 \]

- essential to control the optimization process is a parameterized material card.

4a Impetus graphical user interface

The whole process to determine validated material cards is included in one software solution, starting with testing up to a speed of 10 m/s and ending with automatic set up of a LS-OPT Input deck of the tests to determine the material cards.
4a Impetus typical simulation models

The models are controlled by the underlying database of the conducted tests.

4a Impetus implemented stress strain rules

To reproduce the measured mechanical behavior different material laws can be used, to describe the stress strain dependency.

- Bilinear - often implemented in LSDYNA material cards as two parameter law
 \[\sigma = \sigma_0 + E_T \cdot \varepsilon_p \]

- Ludwik
 \[\sigma = A + B \varepsilon_p^n \]

- Bergström
 \[\sigma = A + k \sqrt{1 - \exp(-0.5 \varepsilon_p)} \]

- G’sell Jonas - well known for description of polymers with hardening [7]
 \[\sigma = \sigma_0 + K \cdot (1 - \exp(-\sigma_p)) \cdot \sigma_h \varepsilon_p^b \]

- 4a three parameter law (modified Schmachtenberg) [7]
 \[\sigma = \sigma_0 + E \cdot \varepsilon_p \cdot \frac{1}{1 - \frac{E}{H} \cdot \varepsilon_p} \]
4a Impetus
implemented stress strain rules

Depending on the examined material also simple stress strain rules can reflect the material behavior well enough.

bilinear visco plastic

three parameter visco plastic

4a Impetus
implemented strain rate rules

Different well known strain rate rules are available in 4a Impetus

- Power law – simplest law
 \[\sigma = \sigma_0 (\varepsilon) \dot{\varepsilon}^p \]

- Cowper Symonds – often implemented in LS DYNA
 \[\sigma = \sigma_0 (\varepsilon) \left[1 + \left(\frac{\dot{\varepsilon}}{D} \right)^q \right] \]

- Johnson Cook – especially for high strain rates
 \[\sigma = \sigma_0 (\varepsilon) \left[1 + C \ln \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0} \right) \right] \]

- Kang – can also rebuild low strain rates
 \[\sigma = \sigma_0 (\varepsilon) \left[1 + C_1 \ln \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0} \right) + C_2 \left(\ln \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0} \right) \right)^2 \right] \]
4a Impetus implemented strain rate rules

Best representation of velocity dependent measurement through Kang model

<table>
<thead>
<tr>
<th>v</th>
<th>l_m</th>
<th>m_pendulum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>25</td>
<td>510</td>
</tr>
<tr>
<td>2.5</td>
<td>40</td>
<td>510</td>
</tr>
<tr>
<td>1</td>
<td>60</td>
<td>1300</td>
</tr>
<tr>
<td>0.001</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

- averaged test curves
- result of simulation

Currently the following LS-DYNA material cards are implemented in the 4a Impetus system. Further material cards can be easily integrated in the material card build up process.

- **Mat 24 (MAT_PIECEWISE_LINEAR_PLASTICITY)**
 - Very fast material card. Combined with dynamic bending test this material card is a possibility to take into account an average tension/compression behavior.
 - Can be also used with LS-DYNA implicit.

- **Mat 81 (MAT_PLASTICITY_WITH_DAMAGE)**
 - Like Mat 24 with the enhancement of damage model.

- **Mat 124 (MAT_PLASTICITY_COMPRESSION_TENSION)**
 - Possibility to consider different tension and compression loading.
 - Only available for LS-DYNA explicit.

- **Mat 187 (MAT_SAMP-1)** [2][4][6]
 - Recent development especially for polymers, treat different loading cases, multi-axiality and damage.
 - Only available for LS-DYNA explicit. At the moment not all features are implemented in 4a Impetus.
3 Point Bending test
static and dynamic (0.001 – 10 m/s)
considers tension and compression \(\rightarrow \) mixed mode material cards
realistic unloading and loading \(\rightarrow \) damage function can be obtained
used together with MAT 24 \(\rightarrow \) fast determination and good general prediction

fixed 3 Point Bending test
static and dynamic (0.001 – 10 m/s)
the loading case starts with bending and rapidly changes to tension dominated load case. Combined with normal 3 Point bending test
the tension and compression difference of materials can be shown.
Material Cards like MAT_PLASTICITY_COMPRESSION_TENSION can be determined.

puncture test (biaxial)
static and dynamic (0.001 – 10 m/s)
going on work to fulfill the needs of sophisticated material models MAT_SAMP-1

Showcase for the use of material cards considering different tension and compression behavior like
MAT_PLASTICITY_COMPRESSION_TENSION or MAT_SAMP-1

averaged test curves
result of simulation
outlook

damage function

Current works engage with multiple loading and unloading in dynamic as well as in static load cases to determine an automated damage function of material models. The following picture shows multiple loading and unloading with 4a Impetus (1-2 m/s). Another important aim is to deal with visco elasticity.

outlook

short fiber reinforced thermoplastics

It is planned to implement further standard material laws to determine orthotropic behavior

LS-Dyna Material Laws

- *MAT_ORTHOTROPIC_ELASTIC (2)*
 - orthotropic, elastic, no damage
- *MAT_ANISTROPIC_VISCOPLASTIC*
 - isotropic elastic, anisotropic visco plastic
- *MAT_ORTHO_ELASTIC_PLASTIC (108)*
 - orthotropic, elastic – *plastic*

Combined with 4a fibermap and 4a MicroMec we see a huge leverage effect to tune up standard simulation processes.
conclusion

LS-DYNA® has included plenty of material cards, each of them offering different scalability and complexity to describe the behavior of non-reinforced thermoplastics. The consideration of the strain rate behavior is included in many material cards, e.g. in the well known MAT_PICEWISE_LINEAR_PLASTICITY. More complex material models can also handle varying compression and tension behavior as well as unloading by using damage functions. One of the recent development results is MAT-SAMP-1 by Du Bois, Kolling, Feucht and Haufe.

For better use of the above mentioned models a huge amount of tests have to be carried out, to determine the material parameters and to represent the thermoplastic characteristics in crashworthiness simulations.

4a impetus builds up an efficient and reliable process, starting with realistic tests and finally ending up with a validated material card. Recent developments of new test methods for 4a Impetus have been presented, that satisfy the needs of complex material models as well as the expectations with regard to easy and favorable testing.

appendix

literature

 May 2007, Version 971
 W. Retting, Hanser Verlag 1991
[3] Charakterisierung und Modellierung unverstärkter thermoplastischer Kunststoffe zur numerischen Simulation von Crashvorgängen
 M. Junginger, Frauenhofer EMI Bericht 15/02
[4] Validation and Verification of Plastics under Multiaxial Loading
 A. Ratai, S. Kolling, A. Haufe, M. Feucht, P. Du Bois
 7th GERMAN LS-DYNA Forum, Bamberg 2008
 M. Nutini, M. Vitali, 7th GERMAN LS-DYNA Forum, Bamberg 2008
 S. Kolling, A. Haufe, M. Feucht, P. Du Bois
 9th International LS-DYNA User Conference
 P. Fuchs, Institut für Werkstoffkunde und Prüfung der Kunststoffe an der Montanuniversität Leoben