New Features of LS-PrePost 3.0

Philip Ho

LSTC

Summary:

The introduction of the new LS-PrePost 3.0 will be presented here. A completely redesigned graphical user interface has been implemented in the new version of LS-PrePost 3.0. Tool bars and icons are being used for the main manual system to replace the old text based button system. The icons can be set to have text or without text. The new interface provides the maximum possible graphical area for the model rendering at the same time allow users to define their own toolbar with frequently used icons put together as they like. Besides using icons from the toolbars, a pull down manual system can also be used to reach to the function interfaces. Popup windows are used for each functional operation. Only one functional operational will be active at one time. Users can easily switch between the old and new interfaces if they do not feel comfortable in using the new interface. Also, an old to new interface button system has been implemented to transition users from the old interface to the new interface. Another major feature in LS-PrePost 3.0 is the newly developed geometry processing engine. The geometry processing engine is based on Open Cascade Technology 6.3. LS-PrePost 3.0 supports basic geometry entities such as lines, surfaces, and solids. It supports shape fixing and reshaping, such as fixing hole, small edge removal, vertex reposition and deletion, small face removal or face extension. It also supports faces stitching to provide better meshing result in the auto mesher. Geometry data can be imported via Iges or Step file format, while modified geometry also can be exported in iges file format. Surfaces can also be created from existing mesh using LSTC's own reverse engineering module.

Beside the new interface and geometry processing engine. New applications have been added to the LS-PrePost3.0 such as the Roller Hemming job setup and the LS-DYNA ALE job setup. An application frame work has been created such that new applications can be easily added in the future.

LSTC

2.3 Simula termination	Ition Control	es output		
	ALE			
	Grapher Smidtlin Control tables 2010 tribue 14 Advection Advection	enven [11] Termination time Time: 300 Time: 300 Colosi boundary condition Bunder Automation Reference preserve: 0.001 Pa Point History Lauber of Part History Advance Advance	240 Setup New Job Job Sefu Output	

2. Simple ALE model				
2.5 Output DYNA Model mesh file ALE input deck main file	input deck files which includes mesh file			
	ALE Output 23 Model File: [s_ale_model]_3 Volume Fraction File: [s_ale_vfr.k.] ALE File: [s_ale_k] Dyna Version: [V971] CPU Number: 1 Master Folder: E:thestiple[test1] Browse			
LSTC Lesters der	Output Dyna Cancel	55		

3.4 Output	DYNA input deck files	
Model mesh	file	
ALE input de	ck main file which includes mesh file and volume	
fraction file		
	ALE Output	
	Model File: Is_ale_model	
	Volume Fraction File: Is_ale_vfr.k	
	ALE File: Is_ale.k	
	Duna Version: V971 V	
	CPU Number: 1	
	Master Folder: E:\test)ale\test1 Browse	
	Sub-Folder: s_ale	
	Output Dyna Cancel	

	4. ALE/FSI Model							
In this and F 4.1 M	model setup, we luid Structure In odel description	e are going to teraction (FS	add mesh motion SI)					
Material Definitions	*MAT	*EOS						
Air	*MAT_NULL	*EOS_LINEAR_POLYNOMI AL	Bittines Coupled Exterior Lagrangian					
Water	*MAT_NULL	*EOS_GRUNEISEN						
HE	*MAT_HIGH_EXPLOSIVE_BURN	*EOS_JWL						
Steel	*MAT_PLASTIC_KINEMATIC							
			1.					
LSTC Honorado			60					

