x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Development of validated Finite element model of an articulated truck suitable to simulate collisions against road safety barriers

Crashworthiness is one of the most important aspect which is taken into account in road design. The effectiveness of Finite Element Method (FEM) to solve major design problems and as a tool to perform parametric studies, has been plainly demonstrated in literature. Of course this is possible only when available models of vehicles and devices are calibrated in a wide range of impact conditions. This research, was intended to develop a well defined multipurpose finite element model of an articulated truck. The model has been set up taking into account two real test impacts, the first against a concrete wall and the second against a steel bridge safety barrier. The fundamental steps of the modelling process will be described along with any requirements needed to reproduce the two full scale tests. The results obtained demonstrate that the modelling processes of vehicle and safety devices were accurate and that, in particular, the articulated truck FE model is suitable for a wide range of impact conditions. As a conclusion, the validated model is reliable to foresee the impact behaviour without needing expensive crash tests.

application/pdf 5.2.2.pdf — 845.0 KB