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ABSTRACT 

 
The aim of this project is to optimize the geometry of a crash-box due to impact 
at low velocity impact. The optimization problem is solved in LS-OPT, using 
Neural Networks as meta-model. The Neural Networks meta-model has been 
evaluated on a small test example and it shows remarkable good approximation 
of the responses. 
The geometry was parameterized using HyperMorph. In addition to the geometry 
parameters, the sheet thickness and the material quality of the crash-box and the 
bumper-beam were also varied. The FE-model used is a passenger car from 
Saab Automobile. The objective is to minimize the mass of the crash-box 
subjected to two deformation constraints and a constraint on the maximum 
plastic strain in the main crash-rail, which is positioned behind the crash-box.  
During the optimization procedure, unfortunately, the crash-rail shown to be too 
weak and it need to be strengthening up using an extra component in the weak 
section of the crash-rail. Consequently no solution that fulfilled all constraints was 
found. However, LS-OPT reduced the mass of the component with 20 % and in 
the same time reduced the sum of all constraint violations with 50 %. Only the 
plastic strain constraint was violated after five iterations. The meta-modelling 
technique using Neural Networks showed good results with small surface 
approximation errors.  
 

INTRODUCTION 
 
When a vehicle impacts in less than 15 km/h velocity, the insurance companies 
require that the damage of the vehicle should be as small as possible. Then the 
cost to repair the vehicle will be lower and the insurance fee can be reduced.  
The insurance companies requirements can e.g. be that the headlights and 
engine hood should be undamaged after the impact. Another constraint can be 
that no other structural parts of the vehicle than the most frontal ones should be 
damage in a frontal impact at low speed. Different countries have different impact 
for this evaluation, e.g. different barrier types and different velocities.  
The components that are allowed to collapse in a low velocity impact are the 
bumper-beam and the crash-box. The total lengths of these components are 
generally limited by the design of the vehicle but the width and height can vary 
rather freely. The material properties and sheet thickness can also be modified to 
improve the vehicle low speed impact performance.  
These components, i.e. bumper-beam and crash-box, can be changed rather 
independently of other structural components. Therefore it is useful to utilize 
mathematical optimization by altering the geometry and the material and 
structural properties of the bumper-beam and crash-box to improve the low 
speed performance.  
Saab Automobile has provided the vehicle model used in this paper. To improve 
the low speed impact behaviour, the geometry has been optimized using LS-OPT 
(1). The geometries of the bumper-beam and the crash-box are parameterized 
using HyperMorph (3). 
 

OPTIMIZATION METHODOLOGY 
 
Meta-modelling techniques are necessary in design approximation when the 
simulations of the physical model are extremely costly. These techniques allow 
exploratory techniques such as optimization, variable screening, tradeoff studies 
etc. to be conducted using surrogate design information. Several techniques are 
available in LS-OPT, namely the Response Surface Methodology (RSM) based 
on polynomial expressions, Artificial Neural Networks and Kriging. Each has its 
advantages and pitfalls. The present study only focus on the optimization of 
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nonlinear problems in crashworthiness design using LS-DYNA (2) and Neural 
Networks as meta-model. 
Neural methods are natural extensions and generalizations of regression 
methods. Like RSM, they model relationships between a set of input variables 
and an outcome. They can be thought of as computing devices consisting of 
numerical units (neurons), whose inputs and outputs are linked according to 
specific topologies. A neural model is defined by its free parameters - the inter-
neuron connection strength (weights) and biases. These parameters are typically 
learned from the training data using an appropriate optimization algorithm. The 
training set consists of pairs of input (design) vectors and associated outputs 
(responses). The training set consists of pairs of input vectors and associated 
outputs. The training algorithm tries to steer network parameters towards 
minimizing a distance measure, typically the mean squared error. Figure 1 shows 
an example of a Neural Network. See LS-OPT user’s manual (1) for the theory of 
the Neural Network.  
In the modelling of an unknown nonlinear relationship, when there is no 
persuasive parametric regression model available, and the constraints are 
uncertain, one might believe that a good experimental design is a set of points 
that are uniformly scattered on the experimental domain (design space). When 
using Neural Networks as meta-model, the experimental design called Space 
Filling is used. The method maximizes the distance between design points such 
that the total design space will be covered. In LS-OPT, several different methods 
are available to generate the Space Filling design. 
 

 
Figure 1 Example of a Neural Network 

 
 

TEST EXAMPLE 
 
In this section the Neural Networks meta-modelling technique is evaluated on a 
small FE-model, which consists of a crash-box, a bumper-beam and a supporting 
structure behind the crash-box, see Figure 2. A rigidwall impacts into the bumper-
beam, which has symmetry boundary conditions on the left side. The supporting 
structure is clamped at the end. 
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Figure 2 Small FE-model 

The quality of the Neural Network meta-model in LS-OPT is evaluated by 
determining how well the interpolated responses are fitted. Similar variables and 
responses as we will use in the large optimization problem are used here. The 
sheet thickness of the crash-box and the height of the end of the crash-box are 
used as design variables, see Figure 3. The maximum displacement of the 
rigidwall is used as a response and denoted intrusion. The second response is 
the maximum plastic strain in the supporting structure behind the crash-box after 
the impact. 

 
 

 
Figure 3 The change in height of the small FE model 

To be able to plot how well the meta-model interpolates the responses, we run 
two separate optimization problems. One for each design variable, i.e. the sheet 
thickness and the height. LS-OPT ran for three iterations using four FE 
simulations for each iteration, i.e. a total of 12 FE simulations. Next a tradeoff 
curve is determined for each response and each design variable. This curve 
shows how well the meta-model has interpolated the response. Figure 4 shows 
how the intrusion and plastic strain depend on the sheet thickness, which is 
varied between 0.8 mm and 2.5 mm. The squared dots in the figures denote the 
simulated values and the line denotes the interpolated values. The figure shows 
that the interpolation is good and can capture both linear and nonlinear effects 
within the same interpolation function. The plastic strain is almost zero from 0.8 
mm up to a sheet thickness of 2 mm and after that the plastic strain is raised to 
0.85 at a sheet thickness of 2.5 mm. The Neural Networks covers all these 
effects well. Next the height of the end of the crash-box is varied and the trade-off 
curves are shown in Figure 5. Here the intrusion shows a nonlinear behaviour, 
which the Neural Networks covers exactly. The plastic strain is not as nonlinear 
as the intrusion, however the interpolation is also good for this response.

Hmax Hmin 
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Figure 4 Trade-off curve when varying the sheet thickness, the intrusion to 

the left and the plastic strain to the right. The square markers are all 
simulated values.
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Figure 5 Trade-off curve when varying the height of the box, the intrusion to 

the left and the plastic strain to the right. The square markers are all 
simulated values. 

All interpolations for all responses relative to all variables show excellent results 
and this can be used as meta-model for the large FE model used in the next 
section. 

 
OPTIMIZATION OF THE GEOMETRY OF A CRASH-BOX USING LS-OPT 

WITH NEURAL NETWORKS 
 

In this section the results from the optimization of the geometry of a crash-box 
using LS-OPT with Neural Networks. The FE model provided Saab Automobile, 
consists of 250.000 elements. It is subjected to 16 km/h impact into a rigidwall. 
This loading case is called Danner and it is simulated for a response time of 100 
ms. The computing time was 18 hours on two Linux 3.2 GHz computers using the 
MPP-version of LS-DYNA version 970. The FE vehicle model used is shown in 
Figure 6. Figure 7 shows the deformed vehicle model at the final time state. 
Figure 7 also shows the geometry of the rigidwall. 
For the low speed impact loading cases the insurance companies require that 
e.g. the headlights and engine hood must be undeformed after the rigidwall 
impact. Other requirements are that no other components than the most frontal 
ones, e.g. bumper-beam and crash-box, should be damage. This means that the 
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crash-rail behind the crash-box must be undeformed after the impact. Three 
different constraints for the optimization problem can be formulated.  
Two of these constraints are exemplified in Figure 7. The first constraint is that 
the back of the bumper-beam should not deform the radiator. This is denoted the 
“intrusion y0”. The second constraint denoted “intrusion” is that the rigidwall 
should not deform the headlights and engine hood. Figure 7 illustrates these two 
constraints. The third constraint is that the maximum plastic stain in the crash-rail 
must be limited such that it does not need to be repaired after a low speed 
impact. A moderate plastic strain is allowed in the crash-rail but it should not be 
too large. This constraint is denoted “plastic strain”. If the crash-box collapses in 
a correct manner, the forces and moments applied on the crash-rail are small. All 
forces and moments calculated in a section directly behind the crash-box are 
summed to a scalar value, which is constrained in the optimization. Finally the 
mass is not allowed to increase from its original design. The objective is to 
minimize the mass of the components that are varied.  

 
Figure 6 The vehicle model 

There are three geometrical parameters, two sheet thicknesses and two material 
properties. The geometrical parameters are parameterized in HyperMesh using 
the morphing interface and all three parameters can be changed independently 
of each other. The first geometrical variable is the height of the front of the crash-
box and the bumper-beam, which can vary between -20 and 60 mm from its 
initial position, see Figure 9. 
The second variable is the width of the crash-box, which can vary from –25 to 45 
mm from its initial position, see Figure 10. The last geometrical parameter is 
illustrated in Figure 11. Inside the bumper-beam it is an empty space of which the 
height (height space) can be varied from –15 to 20 mm. Finally the sheet 
thickness, the material-hardening curve of the bumper-beam and the crash-box 
are varied. This gives a total of seven design variables. All responses are 
normalized against each constraint value, such that all the constraints should 
have the same dimension. If LS-OPT does not find any design that fulfils all 
constraints, the program will find the design point that violates the constraints the 
least. If the response values have large differences in values, only the response 
with largest value might be reduced even if the violation in percentage is lower 
compared to the other responses. 
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The optimization problem is formulated as: 
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Figure 7 Bottom and top views of the maximum deformation  

 

 
Figure 8 Fringe plot of the plastic strain. The maximum value in the crash 

beam is used as a response. The maximum value is found inside the box in 
the picture 

LS-OPT ran for five iterations using 12 FE simulations per iteration. The quality of 
the meta-model Neural Networks was very good. Figure 12 and Figure 13 shows 
the computed vs. the simulated values of the responses. If the prediction is 
perfect, all the dots should be on the straight line in the figures. The global 
prediction for all responses shown in the Figure 12 and Figure 13 are good. 
Table 1 shows the optimum result from each iteration and Figure 14 the 
optimization history of the mass. Figure 15 show the optimization history of all 
constraints and Figure 16 shows the optimization history for the sum of all 
constraint violations.

Intrusion y0 Intrusion 
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Figure 9 Example of how the beam height can vary 

 

 
Figure 10 Example of how the height space width can vary 

 
 

 
 

 

Figure 11 Example of how the height space can vary 
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Figure 12 The computed vs. the evaluated values for the intrusion to the left 

and intrusion y0 to the right 

The initial design of the vehicle did not fulfil all the constraints; the plastic strain 
was 80 % above the acceptance value and the force and moment response was 
17 % larger than the constraint limit. During the optimization procedure, 
unfortunately the crash-rail shown to be too weak and it needs to be 
strengthening up using an extra component in the weak section of the crash-rail. 
This will be left for future work. Using the present crash-rail, no solution that 
fulfilled all constraints was found.



5th European LS-DYNA Users Conference Optimisation (1) 
 

5a - 27 

 
 

    

 
Figure 13 The computed vs. the evaluated values for the force and moment 

to the left and plastic strain to the right 

However, in the optimum solution the mass was reduced with 20 % and the sum 
of all constraint violations was reduced by almost 50 %. Only the plastic strain 
violates the constraint limit.  
The design variables that change the most from their starting points are the 
thickness of the bumper-beam that was reduced to 1 mm, the material curve for 
the bumper-beam was scaled with 80 %, the height of the crash-box was 
increased with 12 mm and the width was increased with 20 mm. The other 
design variables oscillate around each starting points but end rather close to their 
original values. The geometry of the box tends to be straighter, see Figure 17, 
compared the initial design. 
 

Table 1 Optimization results for all responses in each iteration 

Iter Mass 
Force and 
moment Intrusion

Intrusion
y0 Plastic strain

Sum of all constraint 
violations 

0 1.00 1.17 0.97 1.08 1.80 1.05 
1 1.02 1.38 1.15 1.46 5.30 5.29 
2 0.80 1.17 1.18 1.51 2.80 2.66 
3 0.84 0.94 1.06 1.18 1.54 0.72 
4 0.83 1.06 1.01 1.24 1.51 0.82 
5 0.80 1.04 0.95 1.00 1.50 0.54 
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Figure 14 The optimization history of the mass 
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Figure 15 Optimization of all constraints. The upper limit is equal to one for 

all constraints 
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Figure 16 The optimization history of the sum of all constraint violations 

 
The geometry of the crash-box was changed such that the height of the crash-
box is a bit larger in the back compared to the front. The width increases from the 



5th European LS-DYNA Users Conference Optimisation (1) 
 

5a - 27 

back to the front. However, the geometry of the crash-box is dependent of the 
geometry of the crash-rail and the constraints will try to load the crash-beam such 
that it does not buckle. 
 

 
Figure 17 The geometry of the crash-box in the optimal design point.  

Top and left views 

 
Summary and Conclusions 

 
The optimization problem is solved in LS-OPT, using Neural Networks as a meta-
model. The Neural Networks has been evaluated on a test example and it has 
shown to interpolate the responses remarkable well. 
In LS-OPT version 2.2 a new interface is implemented to HyperMorph, which is a 
module in HyperMesh to parameterize the geometry. Using this interface, LS-
OPT can automatically change the geometry. The height and width of the crash-
box were parameterized and they can be varied independently of each other. The 
last geometry parameter is the height of an inner space of the bumper-beam. In 
addition to the geometry parameters, the sheet thickness and the material quality 
of the crash-box and the bumper-beam were also varied. 
The FE model is a Saab Automobile passenger car. The objective is to minimize 
the mass of the crash-box subjected to two deformation constraints and the 
maximum plastic strain constraint in the crash-rail behind the crash-box was 
limited.  
During the optimization procedure, unfortunately, the crash-rail shown to be too 
weak and it needs to be strengthening up using an extra component in the weak 
section of the crash-beam. Therefore no solution that fulfilled all constraints was 
found. 
However, LS-OPT reduced the mass of the component with 20 % and at the 
same time reduced the sum of all constraint violations with 50 %. Only the plastic 
strain was violated after five iterations. The meta-modelling technique using 
Neural Networks showed good results with small surface approximation errors. 
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