x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Vehicle Roof Crush Modelling & Validation

Real roof crush tests, quasi-static or dynamic, have been widely used to evaluate the safety integration of vehicle structure, especially in the USA, where there are specified standards such as FMVSS 208 and 216. Europe is endeavouring to reach the same target for vehicle safety taking into account the different road condition. However, carrying out full experimental tests is shown to be costly and in many cases unrepeatable. That is why the development of good reliable models can be the key to the solution of successful roof crush simulation that predict real world accidents. For this particular paper, the modelling was partially carried out in Radioss FE model and then translated into LS-DYNA3D. The complete model was finalised in LS-DYNA3D, where it was made available for the roof crush simulations. To improve the structural integrity, spotwelds were remodelled and new Nodal_Rigid_Bodies were built-in manually due to the different definitions and interpretations in these two codes. Roof mesh refinements were done in order to remove roof stiff behaviour in some areas and therefore match the roof deformed pattern shown in real test. Local Cartesian coordinate system was established for rigid planes’ spatial position. In addition, time integration algorithms in LS- DYNA3D were also discussed for roof crush prior to performing quasi-static and dynamic simulations on a small European car. Thereafter the results were verified against the real tests which showed very good agreement, especially in the time history crush characteristics. However, despite the force peak values to be nearly the same there is still a small discrepancy between the quasi-static roof crush simulation and its real test characteristic.

application/pdf Mao.pdf — 2.7 MB