x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Post-test simulation of airliner wing access panel subject to tyre debris impact

The purpose of the investigations described in this paper is a simulation approach for tyre debris impact on wing access panels. Aircraft tyre rubber has a complex structure containing directional layers of nylon reinforcement embedded in the rubber matrix. Material properties of the compound have been derived from quasistatic compression and tensile tests with specimen cut in circumferential and axial direction of the tyre, i.e. with various reinforcement orientations. The Mooney-Rivlin material model describing the structural response of rubber, with embedded layers of elastic reinforcement cables, are used for the idealization of the tyre material. The material constants and reinforcement properties have been calibrated by the quasistatic specimen tests. The tyre mode then has been validated by dynamic impact tests of tyre fragments shot onto aluminium plates under an angle of 45 degrees. Measurements of transient strains of the aluminium plate shows good agreement with the simulation. For the full scale tests, tyre specimen with dimensions of 425x100x27mm were shot onto an access panel, fixed on a steel holding plate, at a velocity of about 110m/s and an angle of 45 degrees. Measurements were taken from strain gauges fixed to the inner surface of the outer cover and to the outer surface of the inner cover. Three tests with approximately the same parameters were carried out and showed good reproducibility of the strain curves. The mesh dependent parameters of the tyre model had to be re-calibrated for the full scale impact test simulation, to obtain a reasonable mesh density. The geometry of the tyre specimen has been matched according to the test. Simplifications that are assumed for the access panel idealization are e.g. the modelling of screws by a tiebreak contact formulation and the neglected rubber seal. The simulation results show a tyre deformation that is quite similar to the test. Also the calculation of the dynamic strains correlates well with the test. The tyre model proves to be robust and can be used for future analyses.

application/pdf Kracht.pdf — 85.7 KB