Using LS-DYNA Implicit for Metal Forming Applications **Cleve** Ashcraft **Roger Grimes** Xinhai Zhu LSTC

Implicit for Metal Forming Applications

- Want to use Implicit for phases of metal forming applications such as
 - Springback
 - Gravity loading

Springback

- LS-DYNA has long supported springback computations
 - Seamless switching from explicit to implicit in the same execution
 - Options to assist convergence
 - Now we can reduce the wall clock time using MPP

Springback Example

- Springback Model
 - Floor pan
 - 188K shell elements, 204K nodes
 - 1 transient time step, 47 Full Newton Iterations
 - 1.04M rows and 28.3M nonzeroes in ${\bf K}$

Time = 0

Time = 0.1 max displacement factor=10

Implicit Performance

	Wall Clock	Memory	
	(minutes)		
Serial	131	678 Mw	
MPP-1 proc	154	682 Mw	
MPP-2 proc	88	366 Mw	
MPP-3 proc	73	231 Mw	
MPP-4 proc	55	210 Mw	

Ratios

	Time Max.	Time Speedup	Memory Max.	MemoryR atio
1	144	1.00	682	1.00
2	78	1.85	366	1.86
3	63	2.29	231	2.95
4	45	3.20	210	3.25

Plot of Time Speedup

Livermore Software Technology Corporation

Plot of Ratio of Max. Memory

Implicit Performance Issues

- Currently working on factor work distribution that caused 3 processor wall clock time to be higher than expected.
- Examining memory use regarding scalability
- Implementing small number of processor run time switch to overcome parallel overhead for 1 and 2 cpu jobs.

Gravity Loading

- Since the workpiece is free to move implicit statics has a singular stiffness matrix.
 - Typical solution is to use implicit dynamics but this does not yield the desired static solution
- We have added 2 new features to overcome this problem
 - Death and burial times for implicit dynamics
 - Automatic tie constraint generation

Death and Burial Times for Implicit Dynamics

- The idea is to gradually ramp down the effects of dynamics over several time steps starting at the death time until zero at the burial time.
 - Allows use of dynamics to overcome initial singularities and then converge to static solution.
 - Still not sufficient for gravity loading.

Automatic Tie Constraints

- To remove singularities for gravity loading we must tie the work piece down to suppress rigid body motions.
- We have an experimental approach to automatically generate such tie constraints.
- Seems to work well for gravity loading of metal forming applications.

- Model is from Ford
- Coarse model has
 - 99681 nodes
 - 87629 elements
- Finer Model has
 - 218277 nodes
 - 208973 elements

SPRINGBACK

Summary

- LSTC now has MPP Implicit
- MPP Implicit will reduce the wall clock time for metal forming application
- We have added additional features for gravity loading applications